

INSTITUTO POLITÉCNICO NACIONAL

CENTRO INTERDISCIPLINARIO DE INVESTIGACIÓN PARA EL DESARROLLO INTEGRAL REGIONAL UNIDAD OAXACA

MAESTRÍA EN CIENCIAS EN CONSERVACIÓN Y APROVECHAMIENTO DE RECURSOS NATURALES

(Ingeniería)

"ANÁLISIS DE LA PÉRDIDA DE LÍPIDOS DURANTE EL SECADO CONVECTIVO DE LA BIOMASA DE MICROALGAS"

TESIS

Que para obtener el grado de:

Maestro en Ciencias

Presenta:

Deyla Azucena Barranco Montesinos

Directores de tesis:

Dr. Juan Rodríguez Ramírez

Dr. Luis Carlos Fernández Linares

Oaxaca de Juárez, 2016

INSTITUTO POLITECNICO NACIONAL SECRETARIA DE INVESTIGACION Y POSGRADO

ACTA DE REVISION DE TESIS

 En la Ciudad de junio
 Oaxaca de Juárez
 siendo las
 13:00
 horas del día
 22
 del mes de

 junio
 del
 2016
 se reunieron los miembros de la Comisión Revisora de Tesis designada

 por el Colegio
 de Profesores de Estudios de Posgrado e Investigación del Centro

 Interdisciplinario
 de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca

 (CIIDIR-OAXACA)
 para examinar la tesis de grado titulada: "ANÁLISIS DE LA PÉRDIDA DE

 LÍPIDOS DURANTE EL SECADO CONVECTIVO DE LA BIOMASA DE MICROALGAS"

Presentado por la alumna:

Barranco	Montesino	s Devla	Azuc	ena				
Apellido paterno	materno	nombre(s)	·····					
		Con registro:	A	1 4	0	0	7	3
aspirante al grado APROVECHAMIENTO	de: MAESTRÍA E DE RECURSOS NATUR	EN CIENCIAS	EN		CONSERVACIÓN Y		IY	

Después de intercambiar opiniones los miembros de la Comisión manifestaron *SU APROBACION DE LA TESIS*, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes.

LA COMISIÓN REVISORA

Directores de tesis

Dr. Juan Rodríguez Ramírez

Dra. Lilia Leticia Méndez Lagunas

Dra abel Lopez Ortiz

Dr. Luis Carlos Femández Linares

111

Dr. Sadoth Sandoval Torres

Dr. Salvador Isidro Belmonte Jiménez

PRESIDENTE DEL COLEGIO DE PROFESORES

CENTRO INTERDISCIPLINARIO DE INVESTIGACION PARA EL DESARROLLO INTEGRAL REGIONAL C.I.I.D.I.R. UNIDAD OAXACA I.P.N.

INSTITUTO POLITÉCNICO NACIONAL secretaría de investigación y posgrado

CARTA CESION DE DERECHOS

En la Ciudad de Oaxaca de Juárez el día 21 del mes de junio del año 2016, el (la) que suscribe Barranco Montesinos Deyla Azucena, alumno (a) del Programa de **MAESTRÍA EN CIENCIAS EN CONSERVACIÓN Y APROVECHAMIENTO DE RECURSOS NATURALES** con número de registro A140073, adscrito al Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, manifiesta que es autor (a) intelectual del presente trabajo de Tesis bajo la dirección de los Drs. Juan Rodríguez Ramírez y el Dr. Luis Carlos Fernández Linares y cede los derechos del trabajo titulado: "ANÁLISIS DE LA PÉRDIDA DE LÍPIDOS DURANTE EL SECADO CONVECTIVO DE LA BIOMASA DE MICROALGAS", al Instituto Politécnico Nacional para su difusión, con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o director del trabajo. Este puede ser obtenido escribiendo a la siguiente dirección **Calle Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca**, e-mail: <u>posgradoax@ipn.mx</u> ó deylabarranco@gmail.com Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo.

CENTRO INTERDISCIPLINARIO DE INVESTIGACION PARA EL DESARROLLO INTEGRAL REGIONAL: C.I.I.D.I.R. UNIDAD OAXACA I P M

Barranco Montesinos Deyla Azucena

AGRADECIMIENTOS

Al Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Oaxaca del Instituto Politécnico Nacional (IPN) quién, mediante el proyecto SIP20144651, permitió el desarrollo de este trabajo de investigación.

Al Consejo Nacional de Ciencia y Tecnología (CONACyT), por la beca de estudios con registro 307659, que me permitió realizar esta investigación. Además agradezco la beca de inversión en el conocimiento que recibí en el marco del FOBESII y de la Iniciativa Proyecta 100 mil, para realizar una estancia corta en los Estados Unidos de América.

A la Comisión de Operación y Fomento de Actividades Académicas del IPN (COFAA) y a la Secretaría de Investigación y Posgrado (SIP) por el apoyo económico brindado para asistir a congresos y eventos académicos durante la maestría.

A mi director de tesis, el Dr. Juan Rodríguez Ramírez, por su paciencia y asesoría para la realización de este trabajo. Gracias también por su apoyo para lograr el financiamiento de esta investigación.

A mi co-director de tesis, el Dr. Luis Fernández Linares, mi más amplio agradecimiento por haberme recibido en su grupo de investigación en la Unidad Profesional Interdisciplinaria de Biotecnología, por sus consejos y su valiosa dirección cada semestre hasta lograr la realización de esta tesis.

A la Dra. Annaliese K. Franz, por haberme permitido realizar una estancia de investigación en la Universidad de California Davis, en donde tuve la oportunidad de aprender y realizar parte de esta investigación. También quiero agradecer al Franz Research Group, en especial a Andrew Burch por su recibimiento durante mi estancia y por haberme dado la oportunidad de convivir dentro y fuera del laboratorio.

A mis sinodales, La Dra. Lilia Leticia Méndez Lagunas, el Dr. Sadoth Sandoval Torres y la Dra. Anabel López Ortiz, por el tiempo dedicado para la revisión de este trabajo, por sus observaciones y comentarios a fin de mejorar mi tesis.

Al Dr. Celerino Robles Pérez, por las facilidades otorgadas para realizar parte de esta investigación en el Laboratorio de Suelos del CIIDIR Oaxaca.

A la M. en C. Laura Victoria Aquino, por su apoyo incondicional. Gracias por las enseñanzas, consejos y por su amistad.

A mis compañeros y amigos del Laboratorio de Tecnologías Agroalimentarias del CIIDIR Unidad Oaxaca, por su amistad durante la maestría.

A mis familiares y amigos, por su apoyo y cariño.

"ANÁLISIS DE LA PÉRDIDA DE LÍPIDOS DURANTE EL SECADO CONVECTIVO DE LA BIOMASA DE MICROALGAS"

Lic. Q. F. B. Deyla Azucena Barranco Montesinos

RESUMEN

Los lípidos contenidos en las microalgas han sido objeto de estudio en investigaciones recientes para ser utilizados como biocombustibles. El proceso de producción puede involucrar el secado de la biomasa antes de la extracción de lípidos, debido a que, de acuerdo a algunos autores, mejora el proceso de extracción. Sin embargo, debido a las temperaturas utilizadas y los diferentes métodos de secado, ocurre la pérdida de componentes como proteínas, carbohidratos, pigmentos y lípidos.

Para el desarrollo de un proceso de producción de biocombustibles a partir de microalgas es importante tener en cuenta si durante el proceso de secado, la pérdida de lípidos es considerable (y de así serlo, en qué grado/manera); así mismo es importante establecer las temperaturas de secado más adecuadas, a fin de obtener la mayor cantidad de lípidos necesarios para la producción de biocombustibles.

Tomando en consideración lo anterior, se realizó el estudio del efecto del espesor de concentrado algal (1.5 y 2.5 mm) y de la temperatura (40 y 60°C) durante el secado, en un secador convectivo, en el contenido y composición de lípidos de dos cepas *Chlorella vulgaris* y *Chlorella protothecoides*. Se realizaron extracciones de lípidos en biomasa de las dos especies de microalgas en cuatro etapas del secado y se compararon con los diferentes tratamientos de secado. La producción de la biomasa microalgal se realizó en medio Basal de Bold, en raceway de 1600 L bajo condiciones de invernadero.

C. protothecoides presentó mayor reproducción de la especie durante el cultivo. A mayores tiempos de secado se obtuvo mayor cantidad de EOT. Se lograron mayores contenidos de EOT cuando es cultivada en raceway y cuando las extracciones se realizan por el método Soxhlet.

Por su parte, se observó que *C. vulgaris* presentó mayor contenido de EOT cuando fue cultivada en fotobiorreactores y cuando las extracciones se realizaron por el método Folch modificado y posterior extracción líquido-líquido. Se observó que los mayores contenidos de EOT se obtuvieron al secar con un espesor de 1.5 mm, por lo que se concluye que el espesor tiene significancia estadística (para P=0.05) en el contenido de EOT. En cuanto a los métodos de extracción se observó que la extracción con metanol y posterior extracción con hexano logra obtener mayores contenidos de EOT al igual que el método ASE. Finalmente, los contenidos de EOT durante el secado si se ven afectados. En *C. protothecoides* se observó la disminución conforme ocurría el secado, mientras que *C. vulgaris* no presentó relación entre el contenido de humedad y la pérdida de lípidos, sin embargo, si se observa una disminución en el contenido de lípidos al inicio y al finalizar el secado.

Palabras clave: biocombustibles, *Chlorella protothecoides, Chlorella vulgaris*, extracción de lípidos, microalgas, secado convectivo.

Dirigido por Dr. Juan Rodríguez Ramírez

"ANALYSIS OF LIPID LOSS DURING CONVECTIVE DRYING MICROALGAE BIOMASS"

Lic. Q. F. B. Deyla Azucena Barranco Montesinos

ABSTRACT

Lipids contained within micro-algae have been at the heart of current research in the development of bio-fuels. Literature on algae based bio-fuel claims that drying improves the process of lipid extraction. However, due to the different drying methods and the temperatures used in such process, some authors have reported the loss of proteins, carbohydrates, lipids and pigments.

The development of a bio-fuel production process from micro-algae involves taking two aspects into account. On the one hand, it is necessary to know if the amount of lipids lost during the drying process affects the production process (at all, and if so, to what extent). On the other hand, it is essential to know what the best temperatures in the drying process are, in order to obtain the most lipids that are necessary to bio-fuel production.

Regarding the previously mentioned points, a study on *Chlorella vulgaris* and *Chlorella protothecoides* was conducted. Both species were cultivated in 1600 L of raceway and dried using a convective dryer with two different algae extract thickness (1.5 and 2.5 mm). The micro-algae were also treated at 40°C and 60°C. Lipid extraction from biomass was carried out in both species during 4 stages of the drying process and the samples were compared.

The results show that *Chlorella protothecoides* had the most species reproduction during the cultivation. The species also exhibited that the longer the drying process was the more EOT was produced. The largest volume of EOT extracts was obtained when *Chlorella protothecoides* was cultivated in raceway and when the extractions were performed using the Soxhlet method. On the contrary, *Chlorella vulgaris* showed its largest volume of EOT when cultivated in photobioreactors and when the extractions were executed following a modified Folch method and a liquid-liquid extraction.

The most extensive EOT concentrations were obtained when drying with a 1.5 mm algae extract thickness. This reveals that the variable algae extract thickness has statistical significance (P=0.05) in the EOT concentrations. In addition, it was observed that extraction with methanol and hexane produces the most EOT concentrations just like the ASE method. Finally, the study showed that the EOT contents are indeed affected during the drying process. *Chlorella protothecoides* exhibited an EOT loss during the drying process, while *Chlorella vulgaris* did not show any relation between humidity content and lipid loss. Regardless of this, lipid reduction was observed when contrasting the samples before and after the drying process.

Key words: Bio-fuel, *Chlorella protothecoides*, *Chlorella vulgaris*, convective drying, lipid extraction, micro-algae.

Directed by Dr. Juan Rodríguez Ramírez

INDICE

ÍNDICE DE FIGURAS	vii		
ÍNDICE DE TABLAS	х		
ABREVIATURAS	xi		
CAPÍTULO 1	1		
INTRODUCCIÓN	1		
JUSTIFICACIÓN	3		
ANTECEDENTES			
HIPÓTESIS			
OBJETIVOS	9		
Objetivo General	9		
Objetivos Específicos	9		
CAPÍTULO 2			
MARCO TEÓRICO			
1. MICROALGAS			
1.1. Características			
1.2. Crecimiento			
1.3. Condiciones de cultivo			
1.4. Técnicas de medición de biomasa			
1.5. Composición de lípidos en las microalgas			
1.6. Microalgas utilizadas en este estudio			
2. PROCESAMIENTO DE LA BIOMASA			
2.1. Concentrado de microalgas			
2.2. Secado de microalgas			
2.3. Contenido de humedad en las microalgas			
2.4. Extracción de lípidos			
CAPÍTULO 3			
MATERIALES Y MÉTODOS			
Cepas			
Medio de cultivo			
Cultivo de microalgas			
Cinéticas de crecimiento			

Concentrado de biomasa	0
Determinación del Contenido de Humedad3	1
Secado de biomasa3	1
Titulación por el método de Karl Fischer3	1
Eficiencia de métodos para la extracción de lípidos32	2
Obtención del extracto orgánico total (EOT) por el método Soxhlet	2
Obtención del extracto orgánico total (EOT) mediante extracción acelerada de disolventes . 32	2
Obtención del extracto orgánico total (EOT) por el método Folch modificado	2
Obtención del extracto orgánico total (EOT) mediante el método Folch modificado y posterio extracción líquido-líquido	r 3
Preparación de las muestras para el análisis cromatográfico	3
Análisis de ácidos grasos mediante cromatografía de gases	4
Eficiencia de solventes para la extracción de lípidos neutros	4
Análisis de lípidos neutros mediante fluorescencia con rojo de Nilo	5
DISEÑO EXPERIMENTAL	6
CAPÍTULO 4	8
RESULTADOS	8
Cinéticas de crecimiento	8
Cinéticas de secado	9
Determinación del contenido de agua por el método de titulación Karl Fischer	3
Comparación de métodos de extracción con hexano44	4
Análisis estadístico de los métodos de extracción con hexano 40	6
Análisis cromatográfico de las extracciones con hexano5	1
Identificación de ácidos grasos en el estándar5	1
Comparación de EOT durante los tratamientos de secado52	2
Análisis estadístico del contenido de EOT durante el secado convectivo en <i>C. protothecoides</i> 55	5
Análisis estadístico del contenido de EOT durante el secado convectivo en C. vulgaris 5	7
Comparación de EOT después de los tratamientos de secado (extracción Folch con metanol/extracción líquido-líquido con hexano)59	9
Análisis estadístico de la comparación de EOT después de los tratamientos de secado (extracción Folch con metanol/extracción líquido-líquido con hexano)	1
Comparación de EOT después de los tratamientos de secado (extracción Soxhlet con hexano) 	3

Análisis estadístico de la comparación de EOT después de los tratamientos de secado (extracción Soxhlet con hexano)6	4
Comparación del contenido de EOT en <i>C. vulgaris</i> y <i>C. protothecoides</i> cultivadas en raceway y fotobiorreactores	, 6
Determinación de lípidos neutros mediante fluorescencia con rojo de Nilo6	7
Eficiencia de solventes para la extracción de lípidos neutros6	9
CAPÍTULO 5	3
CONCLUSIONES	3
RECOMENDACIONES	5
BIBLIOGRAFÍA	6
ANEXOS	1
Anexo A. Datos de las cinéticas de secado de <i>Chlorella vulgaris</i>	1
Anexo B. Datos de las cinéticas de secado de Chlorella protothecoides	2
Anexo C. Datos del contenido de humedad en diferentes tiempos de secado en <i>Chlorella</i> protothecoides	5
Anexo D. Comparación gravimétrica del contenido de lípidos durante el secado en <i>Chlorella protothecoides</i>	6
Anexo E. Comparación gravimétrica del contenido de lípidos mediante diferentes métodos de extracción en <i>Chlorella vulgaris</i>	7
Anexo F. Análisis estadístico del contenido de EOT mediante diferentes métodos de extracción en <i>Chlorella vulgaris</i>	8
Extracción por el método Folch modificado con metanol y posterior extracción líquido-líquido con hexano) 8
Extracción por el método Soxhlet con hexano11	9
Anexo G. Análisis estadístico de la comparación de EOT después de los tratamientos de secado (extracción Folch con metanol/extracción líquido-líquido con hexano)	0
Anexo H. Análisis estadístico de la comparación de EOT después de los tratamientos de secado (extracción Soxhlet con hexano)12	2
Anexo I. Cromatograma de las extracciones con hexano por el método Soxhlet	3
Anexo J. Cromatograma de las extracciones con hexano por el método ASE	1
Anexo K. Cromatograma de las extracciones con hexano por el método Folch. modificado 13	7
Anexo L. Cromatograma de las extracciones por el método Folch. modificado con metanol y extracción líquido-líquido con hexano	3

ÍNDICE DE FIGURAS

Figura 1. (a) Curva de crecimiento de una población algal bajo condiciones de cultivo por lotes. (b) Variaciones en la velocidad de crecimiento (Barsanti & Gualtieri, 2014)12
Figura 2. Secador convectivo en forma de túnel que se utilizará en las pruebas de secado17
Figura 3 Curva de secado en capa delgada. Humedad vs Tiempo (Clark, Jung, & Lamsal, 2014) 19
Figura 4. Propuesta del mecanismo de extracción del solvente orgánico (Halim et al., 2012) 24
Figura 5. Fotobiorreactores con cultivo de C. vulgaris
Figura 6. Tolva de 1300 L para propiciar la sedimentación por gravedad en las microalgas 30
Figura 9. Curva de pérdida de peso durante el secado (Tiempo vs Contenido de Humedad) en Chlorella protothecoides
Figura 10. Curva de velocidad de secado (Tiempo vs Velocidad de secado) en Chlorella protothecoides
Figura 11. Curva de velocidad de secado (Contenido de humedad vs Velocidad de secado) en Chlorella protothecoides
Figura 12. Curva de pérdida de peso durante el secado (Tiempo vs Contenido de Humedad) en Chlorella vulgaris
Figura 13. Curva de velocidad de secado (Contenido de humedad vs Velocidad de secado) en Chlorella vulgaris
Figura 14. Curva de velocidad de secado (Tiempo vs Velocidad de secado) en Chlorella vulgaris 42
Figura 15. Curva de pérdida de agua en la biomasa de Chlorella protothecoides durante el secado a 40°C, 1.5 mm
Figura 16. Curva de pérdida de agua en la biomasa de Chlorella protothecoides durante el secado a 60°C, 1.5 mm
Figura 17. Curva de pérdida de agua en la biomasa de Chlorella protothecoides durante el secado a 40°C, 2.5 mm
Figura 18. Curva de pérdida de agua en la biomasa de Chlorella protothecoides durante el secado a 60°C, 2.5 mm
Figura 19. Miligramos de extracto orgánico total por gramo de microalga seca obtenido en la extracción por el método Folch modificado/líquido-líquido en biomasa seca de C. vulgaris
Figura 20. Miligramos de extracto orgánico total por gramo de microalga seca obtenido en la extracción acelerada de disolventes en biomasa seca de C. vulgaris

Figura 21. Miligramos de extracto orgánico total por gramo de microalga seca obtenido en la extracción Soxhlet en biomasa seca de C. vulgaris
Figura 22. Miligramos de extracto orgánico total por gramo de microalga seca obtenido en la extracción por el método Folch modificado en biomasa seca de C. vulgaris
Figura 23. Miligramos de extracto orgánico total por gramo de microalga seca obtenido en diferentes métodos de extracción con hexano en biomasa seca de C. vulgaris
Figura 24. Gráficos de medias de la extracción Folch con metanol seguido de extracción líquido- líquido con hexano
Figura 25. Gráficos de medias del método de extracción ASE con hexano 48
Figura 26.Gráfico de medias de la extracción Folch modificado con hexano
Figura 27. Gráfico de medias del método de extracción Soxhlet con hexano
Figura 28. Cromatograma del estándar FAME SUPELCO 37 (CRM47885) componentes analizados en la columna AT-WAX. Programa de temperatura del horno: 140°C por 5min, 8°C/min hasta 240°C por 15 min
Figura 29. Comparación del EOT obtenido con metanol/hexano durante el secado de C. protothecoides
Figura 30. Comparación del contenido de humedad con el contenido de EOT obtenido con metanol/hexano durante el secado de C. protothecoides
Figura 31. Comparación del contenido de humedad con el contenido de EOT obtenido con metanol/hexano durante el secado de C. vulgaris
Figura 32. Gráfico de medias del contenido de EOT con relación a la temperatura y espesor en C. protothecoides durante el secado
Figura 33. Gráfico de medias del contenido de EOT con relación al espesor y contenido de humedad en C. protothecoides durante el secado
Figura 34. Gráfico de medias del contenido de EOT en relación al contenido de humedad, temperatura y espesor en C. vulgaris durante el secado57
Figura 35. Comparación de los miligramos del extracto orgánico total (EOT) obtenido de la extracción Folch modificado con metanol y posterior extracción líquido-líquido con hexano, de biomasa de microalgas desecada bajo diferentes condiciones
Figura 36. Gráficos de medias de la comparación de EOT obtenidos mediante el método Folch con metanol /extracción líquido-líquido con hexano después de los tratamientos de secado en C. vulgaris con la especie y temperatura de secado

Figura 37. Gráficos de medias de la comparación de EOT obtenidos mediante el método Folch con metanol /extracción líquido-líquido con hexano después de los tratamientos de secado en C. vulgaris con la especie y el espesor de la biomasa
Figura 38. Gráficos de medias de la comparación de EOT obtenidos mediante el método Folch con metanol /extracción líquido-líquido con hexano después de los tratamientos de secado en C. vulgaris con la especie y la temperatura de secado
Figura 39.Comparación de los miligramos del extracto orgánico total (EOT) obtenido de la extracción Soxhlet con hexano, de biomasa de microalgas desecada bajo diferentes condiciones con relación a los gramos de sólido seco de la biomasa
Figura 40. Gráficos de medias de la comparación de EOT de C. protothecoides después de los tratamientos de secado (extracción Soxhlet con hexano) comparado con la especie y temperatura de secado
Figura 41. Gráficos de medias de la comparación de EOT de C. protothecoides después de los tratamientos de secado (extracción Soxhlet con hexano) comparado con la especie y el espesor de la biomasa
Figura 42. Gráficos de medias de la comparación de EOT de C. protothecoides después de los tratamientos de secado (extracción Soxhlet con hexano) comparado con el espesor y temperatura de secado
Figura 43.Comparación de los miligramos del extracto orgánico total (EOT) obtenido de la extracción Soxhlet con hexano, de biomasa de microalgas de dos especies desecada bajo diferentes condiciones
Figura 44.Curva estándar de lípidos neutros67
Figura 45. μg de lípidos en el extracto en función de fluorescencia reportada para Phaeodactylum tricornutum
Figura 46. Fluorescencia de las diluciones en serie de los extractos de Phaeodactylum tricornutum 68
Figura 47. Contenido de lípidos neutros en las diluciones en serie de Phaeodactylum tricornutum
Figura 48. Curva estándar de lípidos neutros69
Figura 49. Fluorescencia de los extractos al realizar el ensayo con rojo de Nilo
Figura 50. Extractos de Nannochloropsis salina; 1. CHCl3/Metanol (extracción simple); 2. CHCl3/Metanol (extracción doble); 3. Hexano/Isopropanol (extracción simple); 4. Hexano/Isopropanol (extracción doble); 5. 2-etoxietanol (extracción simple); 6. 2-etoxietanol 70
Figura 51. Cromatografía en capa fina de los extractos obtenidos de Nannochloropsis salina. Como estándar se colocó aceite vegetal

Figura 52. Lípidos totales extraídos con las diferentes mezclas de solventes (método gravimétrico)
en Nannochloropsis salina	'1
Figura 53. Lípidos neutros extraídos con las diferentes mezclas de solventes (método gravimétrico))
en Nannochloropsis salina	'2

ÍNDICE DE TABLAS

Tabla 1. Composición de ácidos grasos para Chlorella vulgaris (JY. Lee et al., 2010)	14
Tabla 2. Composición de ácidos grasos de Chlorella protothecoides (Cheng et al., 2013)	15
Tabla 3. Composición del medio Basal de Bold (Bischoff & Bold, 1963)	28
Tabla 4. Volúmenes a utilizar de biomasa microalgal para lograr los espesores requeridos para e secado.) 31
Tabla 5. Factores y niveles para la realización del secado convectivo.	36
Tabla 6. Tratamientos para el secado de biomasa microalgal	36

ABREVIATURAS

- 2EE 2-etoxietanol
- ASE Accelerated Solvent Extraction (Extracción Acelerada con Disolventes)
- BBM Bold Basal Medium (medio basal de Bold)
- CHCl3 metanol
- EOT Extracto Orgánico Total
- FAME Fatty Acids Methyl Esters
- FFA Free Fatty Acids
- FID Detector de ionización de llama
- ss sólido seco

CAPÍTULO 1

INTRODUCCIÓN

Debido al agotamiento de los combustibles fósiles y los efectos contaminantes que provoca su combustión, se han buscado fuentes de energía renovables que además contribuyan a la reducción de emisiones de gases de efecto invernadero. Debido a las múltiples ventajas que tienen en comparación con los cultivos de semillas oleaginosas, las microalgas han sido objeto de estudio en investigaciones recientes para ser utilizada como materia prima en el proceso de producción de biocombustibles (Demirbas & Demirbas, 2011; Halim et al., 2012; Goncalves et al., 2013).

El proceso de producción de biodiesel a partir de microalgas se puede dividir en varias etapas: Cultivo, cosecha, deshidratación, extracción de lípidos, transesterificación y acondicionamiento de biodiesel.

Para mejorar la eficiencia de extracción de lípidos mediante solvente se requiere previa deshidratación de la biomasa de microalgas (Halim et al., 2011). Balasubramanian et al. (2013) y Taher et al. (2014) reportaron que el rendimiento de lípidos es mayor en muestras secas que en muestras húmedas de biomasa, por lo tanto se debe incorporar el secado dentro del proceso de producción de biocombustibles a partir de microalgas.

Sin embargo, el principal problema que presenta el secado es el gran gasto energético, pues constituye del 70-75% del costo total del proceso (Show et al., 2013), lo cual lleva a un balance energético negativo (Gallagher, 2011), peligrando la viabilidad comercial, por lo que es necesario incorporar nuevas tecnologías o enfoques (Molina et al., 2003).

El secado convectivo con aire caliente es uno de los métodos industriales más comunes que se utilizan para el secado de material orgánico (Babalis & Belessiotis, 2004), además de que también permite obtener otras formas diferentes a los polvos (Desmorieux & Decaen, 2005).

Existen varios factores del secado con aire caliente que pueden influir en el material, por ejemplo: la velocidad, la temperatura del aire, la difusión del agua a través del material, el espesor y la forma del producto. Los factores más importantes en las condiciones de secado de microalgas son la temperatura y el espesor (Desmorieux & Decaen, 2005; Oliveira, et al., 2009). Dentro de las investigaciones realizadas en relación al secado, algunos autores han reportado la pérdida de componentes durante el proceso. En estudios recientes (Hélène Desmorieux & Hernandez, 2004; Oliveira et al., 2010) se ha demostrado la pérdida de proteínas, azúcares y pigmentos como las ficocianinas durante el secado convectivo de microalgas.

Chen et al. (2013) analizaron el efecto del espesor en el secado de la biomasa microalgal con la finalidad de observar las características físicas del material y su comportamiento durante el proceso, sin embargo, no se ha vinculado con la pérdida de lípidos.

Hussain et al. (2015) encontraron diferencias significativas en el rendimiento de lípidos totales, lípidos neutros y lípidos polares en muestras desecadas y liofilizadas de *Chlorella vulgaris*, sin embargo, no se evaluaron las condiciones durante el secado.

En este trabajo, se propone el estudio del efecto del secado convectivo en el contenido de agua y el contenido de lípidos en la biomasa de microalgas y determinar que factor tiene mayor influencia en la pérdida de lípidos.

JUSTIFICACIÓN

Para mejorar la eficiencia de extracción de lípidos mediante solvente se requiere previa deshidratación de la biomasa de microalgas (Halim et al., 2011). Además algunos estudios (Balasubramanian et al., 2013; Taher et al., 2014) muestran que el rendimiento de lípidos es mayor en muestras secas que en muestras húmedas de biomasa, por lo tanto, es necesaria la eficiente separación del medio de cultivo de la biomasa microalgal para lograr una mayor recuperación de lípidos. Para esto, debe incluirse el secado dentro del proceso de producción de biocombustibles a partir de microalgas.

Así mismo, es necesario incorporar tecnologías que permitan disminuir los requerimientos energéticos y costos del secado, como utilizar energía solar para que la obtención de biocombustible de microalgas sea económicamente posible.

Sin embargo, durante el secado se han reportado pérdidas de componentes en microalgas, como proteínas, carbohidratos, clorofila y ficocianinas. En algunos trabajos (Choe & Min, 2007; Widjaja et al., 2009) también se hace referencia al estudio de la pérdida de lípidos durante el secado, pero únicamente se relaciona la temperatura con el contenido de triglicéridos de la biomasa. En estos estudios no se relaciona de qué manera influye el espesor de la biomasa y la temperatura del aire de secado en la pérdida de estos componentes. Por otro lado, Hussain et al. (2015) encontraron diferencias significativas en el rendimiento de lípidos totales, lípidos neutros y lípidos polares en muestras desecadas y liofilizadas de *Chlorella vulgaris*, sin embargo, no se evaluaron las condiciones durante el secado.

ANTECEDENTES

El contenido de agua en materiales orgánicos es muy importante ya que afecta la calidad sensorial, estabilidad microbiológica, características físicas y vida de anaquel (Silva et al., 2008). En el caso de las microalgas, el concentrado obtenido debe secarse para su estabilidad, para ser utilizado como producto final y para la extracción de metabolitos u otros procesos posteriores, reduciendo de esta manera el contenido de humedad a un nivel que permita el almacenamiento seguro durante cierto tiempo (Lopes et al., 2007).

Los diferentes sistemas de secado se diferencian en el costo y los requerimientos energéticos. La selección de método de secado depende de la escala de operación y del uso destinado al producto seco (Show et al., 2013). El secado convectivo se caracteriza por la cinética de secado experimental para estudiar la influencia de la temperatura y la velocidad de aire (Desmorieux & Decaen, 2005).

En 2004, Desmorieux & Decaen, realizaron secado convectivo en la microalga *Spirulina* en un rango de temperatura de 40-60°C y con una velocidad de aire de 1.9 a 3.8 m/s, estableciendo las isotermas de sorción de 45-60°C. Se encontró que, para condiciones de secado suave (a 40°C y velocidad de aire de 2.5 m/s) aparece un periodo de velocidad de secado casi constante. Para condiciones más fuertes no hay curva de secado constante. Un tercer periodo aparece al final del secado, esta fase puede corresponder a la transferencia limitante a través de las membranas celulares.

Existen varios factores en el secado con aire caliente que pueden influir en los alimentos, por ejemplo: la velocidad y la temperatura del aire, la difusión del agua a través del material, el espesor y la forma del producto (Oliveira et al., 2010) . De acuerdo a la literatura, los factores más importantes en las condiciones de operación de microalgas son la temperatura y el espesor (Desmorieux & Decaen, 2005; Oliveira et al., 2009).

Lopes et al. (2007) investigaron los efectos de la temperatura y el espesor en la deshidratación de la cianobacteria *Aphanothece microscopica Nägeli*. Se realizó secado con aire caliente a temperaturas de 40, 50 y 60°C con espesores de muestra de 3, 5 y 7 mm. Concluyeron que los espesores evaluados muestran mínimo efecto en la calidad final del producto, siendo mayor el efecto de la temperatura en el color y contenido de clorofila.

Desmorieux et al. (2010) estudiaron el encogimiento en la biomasa de *Spirulina* o *Arthrospira sp.* durante el secado convectivo en capa fina a 45°C y con espesores de 1 a 4 mm. Reportaron que durante el secado, el espesor de la capa fina de esta microalga se vuelve irregular y se rompe.

En *Chlorella vulgaris*, se investigó el efecto del contenido de humedad, espesor y temperatura en el proceso de secado. Los resultados indican que los tiempos de secado son cortos cuando la temperatura de secado es alta, el contenido de humedad es bajo y el espesor del material es pequeño. Además se observaron dos etapas en el proceso de secado, ocurriendo la pérdida de masa en la segunda etapa (Chen et al., 2013)

Dentro de las investigaciones realizadas en relación al secado, algunos autores han reportado la pérdida de componentes durante el proceso. Desmorieux & Hernández (2004) estudiaron la disminución en el contenido de proteínas y azúcares durante el secado convectivo, infrarrojo, por aspersión y liofilización en la microalga *Spirulina*, y encontraron que en el secado convectivo, la pérdida de proteínas y carbohidratos varió de acuerdo a la temperatura del aire utilizado. Estas pérdidas fueron mayores en los carbohidratos que en las proteínas. La pérdida de proteína usando aire entre 40 y 70°C fue proporcional a la temperatura de secado, sin embargo la pérdida de carbohidratos permaneció constante de 40 a 70°C. También se han reportado pérdidas de ficocianinas en esta especie durante el secado convectivo con flujo de aire, mostrando un efecto significante (P < 0.05) la temperatura del aire de secado y el espesor de la muestra (Oliveira et al., 2010).

En estudios de secado de especies vegetales, se ha encontrado que el secado convectivo evapora algunos de los componentes volátiles del material (Omidbaigi et al., 2004), disminuyendo su concentración (Figiel et al., 2010; Szumny et al., 2010).

En el caso de las microalgas se ha estudiado el efecto de la temperatura de secado de biomasa en el contenido de lípidos. La investigación realizada por Widjaja et al. (2009) en la especie *Chlorella vulgaris*, muestra que el contenido de triglicéridos disminuye cuando la biomasa se seca a altas temperaturas (mayores a 60°C). También encontraron que los ácidos grasos insaturados, especialmente los ácidos grasos libres poliinsaturados (PUFA), fueron más susceptibles a la oxidación que los ácidos grasos saturados. La explicación de la degradación de triglicéridos fue la oxidación a altas temperaturas durante 12 horas. Bockisch (1998) y Choe & Min (2007) también reportaron que la degradación de triglicéridos por la oxidación resultó en la formación de grupos

hidroperóxidos (-OOH) en la cadena carbonada. Los hidroperóxidos formados pueden reaccionar con aldehídos, cetonas y ácidos grasos.

El desarrollo de un proceso eficaz y energéticamente eficiente de extracción de lípidos de microalgas, es crítico para el éxito del escalamiento del proceso (Halim et al., 2011). La remoción de agua contenida en la biomasa es necesaria para la posterior extracción de lípidos (Guldhe et al., 2014), por lo que el secado se vuelve indispensable en el proceso. Además, la presencia de agua en la biomasa húmeda forma una película que evita que el solvente extraiga los lípidos, lo cual dificulta la extracción (Taher et al., 2014). Algunos estudios muestran que el rendimiento de lípidos en la extracción de células secas es mayor que en la extracción de biomasa húmeda (Zhu et al., 2002).

Balasubramanian et al. (2013) concluyeron que contenidos de humedad elevados en la biomasa reducen la eficiencia en la extracción de lípidos con solvente. Se demostró que el contenido de humedad tiene un efecto significante en el rendimiento de lípidos. Se planteó la hipótesis de que las moléculas de agua que rodean la capa externa hidrofílica de la pared celular, resisten la penetración del solvente no polar dentro de la célula, lo cual dificulta la extracción de lípidos. El contenido de humedad también tiene un efecto significante en las fracciones lipídicas obtenidas. Por otro lado, estudios como los de Oliveira et al. (2010) demuestran que bajo condiciones de secado de 55°C y 3.7 mm de espesor, no se encontró una diferencia significativa en la composición de ácidos grasos en las muestras secas en comparación con la biomasa fresca.

Otros estudios demuestran que para poder llevar a cabo una extracción eficiente de lípidos, las microalgas deben romperse para poder liberar los lípidos y permitir que entren en contacto con el solvente (Taher et al., 2014). Esto se realiza convencionalmente utilizando ultrasonicación (Li et al., 2014; Luo et al., 2014; Neto et al., 2013), microondas (González et al., 2009), autoclave a altas temperaturas y presión, y alteración osmótica con cloruro de sodio (Lee et al., 2010).

El tipo de sistema de solvente utilizado también tiene un efecto significativo en el rendimiento de lípidos. Se ha reportado que cloroformo/metanol (2:1) es el mejor sistema de solventes para la extracción de lípidos en microalgas. La eficiencia de la extracción de diclorometano/metanol (2:1 v/v) se ha visto que es tan efectiva como la de cloroformo/metanol (Balasubramanian et al., 2013).

Otros solventes como hexano han sido utilizados (Halim et al., 2011; Keris-Sen et al., 2014) debido a que extraen principalmente lípidos neutros. En el estudio realizado por Olmstead et al. (2013) se ha logrado una recuperación de 86% (w/w) de lípidos neutros utilizando este solvente en la extracción. Neto et al. (2013) utilizaron hexano para extraer lípidos de 3 especies de microalgas, logrando obtener hasta 40.3% (% en peso seco) de aceite. Por otro lado, Balasubramanian et al. (2013) obtuvieron rendimientos bajos de lípidos con este solvente, pero observaron que al añadir un solvente polar al hexano se incrementa el rendimiento de lípidos. La mezcla hexano/isopropanol (3:2 v/v) dio un rendimiento total de 19%. Sin embargo, la mezcla hexano/metanol (3:2 v/v) extrajo mayores niveles de lípidos neutros y polares que la mezcla hexano/isopropanol.

HIPÓTESIS

Tiempos cortos de secado convectivo en la biomasa de microalgas provoca mayor pérdida de lípidos en comparación con tiempos prolongados de secado.

El contenido de EOT de la biomasa húmeda de *Chlorella vulgaris* y *Chlorella protothecoides* se ve afectado por el espesor de la biomasa y no por la temperatura.

La temperatura durante el secado convectivo de biomasa de *Chlorella vulgaris* y *Chlorella protothecoides* afecta el tipo de lípidos de importancia para la producción de biocombustibles.

OBJETIVOS

Objetivo General

Evaluar la pérdida de lípidos durante el secado convectivo en la biomasa de microalgas *Chlorella vulgaris* y *Chlorella protothecoides*.

Objetivos Específicos

- Determinar el efecto del secado convectivo en capa delgada de la biomasa de *Chlorella vulgaris* y *Chlorella protothecoides* en el contenido de extracto orgánico total (EOT).
- Determinar qué factores (temperatura y espesor) ejercen mayor influencia en la pérdida de lípidos durante el secado de biomasa de microalgas.
- Determinar el efecto de las condiciones de secado convectivo en el perfil lipídico de *Chlorella vulgaris* y *Chlorella protothecoides.*

CAPÍTULO 2

MARCO TEÓRICO

1. MICROALGAS

1.1. Características

Las microalgas son un grupo de microorganismos fotosintéticos unicelulares procariontes (cianobacterias) y eucariontes. Se encuentran distribuidas principalmente en el agua, pero también en la superficie de todo tipo de suelos, (Taher et al., 2014)tolerando un amplio rango de temperaturas, pH y disponibilidad de nutrientes. Las microalgas pueden tener ciertos tipos de organización celular: unicelular, colonial y filamentosa. Aunque viven de manera libre, cierto número de microalgas vive en asociación simbiótica con otros organismos (Richmond & Hu, 2013).

Se han identificado alrededor de 40,000 especies, aunque se estima que existen más de 100,000 de las cuales con frecuencia se desconoce su composición bioquímica y metabolismo (Garibay-Hernández, Vázquez-Duhalt, Sanchez-Saavedra, Serrano-Carreón, & Martínez-Jiménez, 2009).

1.2. Crecimiento

Para el crecimiento de una alga autótrofa, únicamente son necesarios agua, luz, CO2, nutrientes y elementos traza. Por medio de la fotosíntesis, el alga será capaz de sintetizar todos los componentes necesarios para su crecimiento. Los parámetros óptimos y rangos tolerables son específicos para cada especie (Barsanti & Gualtieri, 2014).

1.3. Condiciones de cultivo

La temperatura de los cultivos debe ser lo más cercana posible a la temperatura de su hábitat natural. Los requerimientos de la intensidad de luz varían con la profundidad y densidad del cultivo algal. Deben evitarse altas intensidades de luz pues podrían resultar en fotoinhibición. También debe evitarse el sobrecalentamiento debido a la iluminación. Muchas especies requieren ciclos de luz/oscuridad (normalmente 12:12) para su crecimiento. El pH también afecta su crecimiento, siendo de 7 a 9 el rango para la mayoría de las especies. El mezclado es necesario para prevenir la sedimentación de las microalgas y asegura que todas las células de la población se encuentren igualmente expuestas a la luz y los nutrientes (Barsanti & Gualtieri, 2014).

1.4. Técnicas de medición de biomasa

La medición exacta de la concentración de biomasa de microalgas es importante, ya que podemos establecer la población de células por mililitro que hay en un recipiente, así como determinar numéricamente el grado de división celular en cierto tiempo. En el caso de muestras de microalgas unicelulares, las cámaras como el hematocitometro, la cámara Thoma, o las cámaras Fuchs-Rosenthal o Burker son efectivas y comúnmente utilizadas para estimar las densidades de cultivos mediante conteo de células (Barsanti & Gualtieri, 2014).

La densidad óptica, también conocida como absorbancia o turbidez, es usada comúnmente como una medición rápida y no destructiva de la biomasa en cultivos de bacterias y otros microorganismos unicelulares. La cantidad de luz absorbida por una suspensión de células puede relacionarse directamente con la masa celular o el número de células, sin embargo puede haber errores en la estimación de la concentración si la morfología y composición de las células cambian (Barsanti & Gualtieri, 2014; M. J. Griffiths, Garcin, van Hille, & Harrison, 2011).

Otro método utilizado en conjunto con la densidad óptica es la determinación de peso seco. El peso seco (contenido de sólidos) de las células algales que se encuentran en una suspensión se obtiene por el filtrado de un volumen conocido de cultivo en membranas, después los filtros se secan en un horno a 105°C hasta peso constante y el contenido de células (en mg) se calcula por diferencia de pesos. Ésta técnica es útil para grandes volúmenes de muestra. La concentración celular se expresa en unidades de mg/L (Barsanti & Gualtieri, 2014).

Los resultados de estas mediciones se pueden graficar cuando se realiza un cultivo en un sistema cerrado, en el cual no existe entrada o salida de materiales. La población algal incrementa constantemente hasta el agotamiento de algún factor limitante, mientras que otros nutrientes del medio de cultivo disminuyen con el tiempo. Una vez que los recursos han sido utilizados por las células, éstas mueren a menos que se adicione nuevo medio de cultivo. En este método, la población muestra un típico patrón de crecimiento según una curva sigmoidea (Figura 1.a) que consiste en la sucesión de seis fases caracterizadas por las variaciones en el crecimiento (Figura 1.b) (Barsanti & Gualtieri, 2014).

Figura 1. (a) Curva de crecimiento de una población algal bajo condiciones de cultivo por lotes. (b) Variaciones en la velocidad de crecimiento (Barsanti & Gualtieri, 2014).

Después de la inoculación, inicia una (1) fase de adaptación al medio, antes de que las células comiencen a dividirse. Esta fase se conoce como de inducción. Después se presenta una corta (2) fase de aceleración en el crecimiento, caracterizada por un incremento continuo en la velocidad de crecimiento, llegando a su máximo valor, donde es alcanzada la (3) fase exponencial, la densidad celular incrementa en función de tiempo t siguiendo la función exponencial $N_2 = N_1 \cdot e^{\mu}$, donde N₂ y N₁ son el número de células en dos tiempos sucesivos y μ es la tasa de crecimiento. La velocidad de crecimiento es dependiente de la especie algal y parámetros de cultivo como la intensidad luminosa, temperatura y disponibilidad de nutrientes. La fase exponencial dura un corto periodo, debido a que las células comienzan a sobreponerse unas a otras conforme la concentración incrementa. Por eso el cultivo entra a la (4) fase de retardo, y la velocidad de crecimiento celular disminuye principalmente por el agotamiento de nutrientes y luz. Siguiendo a esta fase, la población celular continua incrementando, pero la velocidad de crecimiento disminuye hasta llegar a cero, en este punto el cultivo entra a la (5) fase estacionaria, durante la cual la concentración celular permanece constante en su valor máximo. La etapa final del cultivo es la (6) muerte celular; durante esta fase la calidad del agua se deteriora y los nutrientes se agotan, no pudiendo sustentar el crecimiento. La densidad celular disminuye rápidamente (Barsanti & Gualtieri, 2014).

1.5. Composición de lípidos en las microalgas

Los ácidos grasos son los constituyentes de las moléculas de lípidos (neutros y polares). Una molécula de ácido graso consta de un grupo carboxilo unido a un extremo de una cadena hidrocarbonada sin ramificar. Se clasifican de acuerdo con el número de átomos de carbono en la cadena y el número de dobles enlaces, por ejemplo saturado (sin dobles enlaces), monoinsaturados (un doble enlace) o poliinsaturados (más de un doble enlace). Las cadenas de ácidos grasos en las microalgas van de 12 a 22 carbonos de largo y el grado de insaturación puede variar pero el número de dobles enlaces nunca excede 6 (Halim et al., 2012).

Los lípidos pueden ser clasificados en dos categorías basadas en la polaridad de la molécula: (1) Lípidos neutros: acilgliceroles y ácidos grasos libres (FFA) y (2) Lípidos polares que pueden subclasificarse en fosfolípidos y glicolípidos (Halim et al., 2012).

Los lípidos neutros son utilizados principalmente por las microalgas como energía de reserva. Existen algunos tipos de lípidos neutros que no contienen ácidos grasos, como los hidrocarbonos, esteroles y pigmentos (carotenos y clorofilas). Aunque estas fracciones de lípidos son solubles en solventes orgánicos, no pueden ser convertidos a biodiesel (Halim et al., 2012).

El término "aceite" es utilizado comúnmente para referirse a lípidos que existen en forma líquida en condiciones ambientales. Puesto que los lípidos, especialmente los obtenidos de microalgas, son extraídos como mezclas compuestas de varias fracciones, no siempre se presentan en forma líquida (Halim et al., 2012).

1.6. Microalgas utilizadas en este estudio

Para desarrollar un proceso de producción de biodiesel a partir de microalgas es importante elegir una especie que tenga características adecuadas para condiciones de cultivo muy particulares para así obtener productos específicos (Loera-Quezada & Olguín, 2010). Las microalgas con elevadas productividades lipídicas son deseables para la elaboración de biodiesel, razón por la cual la cantidad de lípidos contenidos en la biomasa y la velocidad de crecimiento, sumados a la eficiencia metabólica y la robustez del microorganismo, son parámetros relevantes para su selección (Garibay-Hernández et al., 2009).

Por lo tanto, esta investigación se ha centrado en dos especies de microalgas, *Chlorella vulgaris* y *Chlorella protothecoides*, esta elección fue hecha principalmente por sus condiciones de crecimiento

variadas y el alto contenido de lípidos reportado (M. Griffiths, Hille, & Harrison, 2012; Miao & Wu, 2004; Xu, Miao, & Wu, 2006).

1.6.1.Chlorella vulgaris

Chlorella vulgaris pertenece a la clase *Chlorophyceae*. Es un alga eucariota unicelular que contiene clorofila. Presenta forma esférica con un diámetro de 5-10 µm. Su pared celular contiene hemicelulosa que da estabilidad y rigidez a las células. Tiene un ciclo de reproducción asexual con la producción de autoesporas de una célula madura que se divide en cuatro nuevas células cada 16-24 horas. Las células algales de esta especie utilizan luz solar para la fotosíntesis (R. E. Lee, 2008). El contenido de pigmento en las células varía entre 0.5 y 5.5% peso seco dependiendo de las condiciones de cultivo y edad (M. J. Griffiths et al., 2011). Con frecuencia, *Chlorella* forma simbiosis intracelular con invertebrados acuáticos y protozoarios (como *Paramecium*). *Chlorella* ha sido muy investigada como posible fuente de alimento (R. E. Lee, 2008). La composición lipídica para esta especie reportada por Lee, et al. (2010) (Tabla 1).

Categoría	Nombre del ácido graso	% Peso total
Saturado	Heptadecanoico/Margarico (17:0)	0.1
Saturado	Estearico (18:0)	3.4
Insaturado	Oleico (18:1)	16.3
Insaturado	Linoleico (18:2)	79.4
Insaturado	α-Linolenico (18:3)	0.1

Tabla 1. Composición de ácidos grasos para Chlorella vulgaris (J.-Y. Lee et al., 2010).

1.6.2. Chlorella protothecoides

Chlorella protothecoides pertenece a la clase *Chlorophyceae*. Es una microalga verde de menor tamaño que *C. vulgaris*. Heterotróficamente produce 55% de lípidos de su peso seco, por lo cual ha sido propuesta como una fuente renovable para la producción de biodiesel (Miao & Wu, 2004; Xu et al., 2006). Su producción lipídica incrementa al limitar el nitrógeno durante la fase de crecimiento exponencial tardío y la limitación de fosfato también contribuye a la acumulación de lípidos (Cheng, Ren, & Ogden, 2013). La composición de ácidos grasos de esta especie fue reportada por Cheng et al. (2013) (Tabla 2).

|--|

Componentes	Contenido de ácidos grasos metil ester (%) ^a
Metil pentadecanoato (C15:0)	3.84
Metil Palmitato (C16:0)	23.14
Metil Palmitoleato (C16:1)	2.41
Metil Estearato (C18:0)	3.11
Ácido oleico, metil ester (C18:1)	15.52
Metil Linoleato (C18:2)	18.13
Metil Linolenato (C18:3)	12.00

^a Cultivo de una etapa llevado durante 11 días en medio proteosa. Los resultados son presentados como la media de tres replicas

2. PROCESAMIENTO DE LA BIOMASA

2.1. Concentrado de microalgas

Separar el alga de su medio y concentrar su biomasa se conoce como "cosechado". La selección de las tecnologías de cosechado depende principalmente de las características del alga (Show et al., 2013). El agua contenida en la suspensión algal debe ser reducida tanto como sea posible para su posterior procesamiento, por lo cual se debe pasar de suspensiones algales muy diluidas (0.02-0.06% de sólidos totales) a pastas que contengan de 5-25% de sólidos totales. Estas pastas concentradas se consiguen por dos pasos, uno de cosecha que da a la mezcla algal de 2-7% de sólidos secos y un paso de remoción del agua cuyo producto final es una pasta algal de 15-25% de sólidos totales. La concentración de la pasta resultante de algas influye en los pasos del proceso siguiente como la extracción de sustancias orgánicas o el secado (Shelef, Sukenik, & Green, 1984).

Los métodos más comunes de cosechado son screening, coagulación, floculación, flotación, sedimentación, filtración y centrifugación. Otras técnicas como electroforesis, electroflotación y ultrasonido se han utilizado en menor medida (Show et al., 2013).

2.2. Secado de microalgas

Después del cosechado, el concentrado de algas es secado para su estabilidad, como producto final, para extracción de metabolitos u otros procesos posteriores. La deshidratación de microalgas se utiliza comúnmente para extender la vida útil de la biomasa. Secar una sustancia tan delicada es un reto y requiere una respuesta innovadora. Los diversos sistemas de secado difieren tanto de los costos de inversión y los requerimientos energéticos. La selección del método de secado depende de la escala de operación y también de la utilidad del producto seco. (Molina Grima et al., 2003; Show et al., 2013).

Los métodos de secado que se han utilizado para microalgas incluyen secado por aspersión, secado en tambor, liofilización y secado solar. El secado por aspersión es el método de elección para los productos de alto valor, pero puede causar deterioro en algunos componentes de las algas, tales como los pigmentos. El elevado costo del secado puede ser un obstáculo importante para producir biomasa en polvo, para su uso en alimentación humana y de ganado. La liofilización ha sido ampliamente utilizada para el secado de microalgas en laboratorios que realizan investigación, sin embargo, es muy caro para su uso a gran escala (Molina Grima et al., 2003). El secado es un paso muy importante en la recuperación de metabolitos intracelulares ya que, en algunos casos, la extracción con solvente de biomasa seca ha demostrado ser mucho más eficaz que la extracción de biomasa húmeda (Belarbi, Molina, & Chisti, 2000; M. Zhu et al., 2002).

2.2.1. Secado convectivo de microalgas

Este secado puede ser descrito como un método de conservación industrial por el cual el contenido y actividad de agua de los productos son disminuidos por aire caliente para disminuir el deterioro bioquímico, químico y microbiológico. El objetivo del secado en los alimentos es reducir el contenido de humedad a un nivel que permita el almacenamiento seguro durante un periodo prolongado (Jacob Lopes et al., 2007).

En el secado convectivo, el calor sensible de un medio gaseoso se suministra a la superficie del material por convección. El agente de secado fluye sobre o través del cuerpo, elimina el agua evaporada y la transporta al secador. Teniendo en cuenta la necesidad de ahorro de energía, también se utiliza la recirculación parcial del medio de secado. Como agente de secado, el aire caliente se utiliza con mayor frecuencia, pero otros medios como gases residuales, vapor sobrecalentado, entre otros, también se pueden utilizar (Strumillo & Kudra, 1986).

El proceso de secado se realiza en un dispositivo denominado "túnel de secado para pruebas piloto" con patente número 304462 (Fig. 2). Este es un prototipo de secador convectivo por flujo de aire de bandeja fija con forma de túnel, el cual puede controlar la temperatura y el flujo de aire para pruebas que así lo requieran. La pérdida en peso de humedad durante el secado puede determinarse a diferentes intervalos sin interrumpir la operación, ya que el secador consta de cuatro charolas colocadas en una bandeja que se encuentra colgando de una balanza adaptada a un ducto a través del cual fluye el aire de secado. Este ducto dispone de una ventana que ayuda a valorar las condiciones físicas de la muestra durante el secado, todos estos complementos se ubican en la parte superior del túnel.

Dentro del túnel se encuentran instaladas las resistencias que son las que proveen de energía calorífica al aire de secado y un ventilador el cual se encarga de dar la fuerza motriz al aire. En la parte inferior se encuentra ubicada una ventila que ayuda a la eliminación de aire húmedo y a la introducción de aire seco para disminuir la humedad del aire en el proceso. En el exterior del túnel se encuentran los sistemas de medición y las computadoras que registran estas medidas.

Figura 2. Secador convectivo en forma de túnel que se utilizará en las pruebas de secado.

2.2.2.Los cuatro periodos de velocidad de secado

La velocidad a la cual se seca la capa fina de un producto es una característica importante. En este secado, todo el producto se encuentra en condiciones de secado idénticas. Al graficar la humedad contra el tiempo para una capa delgada, se obtiene la curva de secado para el producto. Para un

producto de alto contenido de humedad, podemos identificar cuatro regiones desecado distintas (Clark et al., 2014):

- Región transitoria inicial: el producto se equilibra con la temperatura de bulbo húmedo del aire, ya sea por evaporación o humedad de la superficie (si el producto es inicialmente más caliente que la temperatura de bulbo húmedo del aire de secado) o condensación (si el producto está frio inicialmente).
- 2. Región de velocidad constante: durante el secado a velocidad constante, el proceso puede ser modelado utilizando la ecuación de bulbo húmedo:

$$m_s \frac{dM}{dt} = k_y A(H_s - H_a)$$

donde t es el tiempo de secado, M es el contenido de humedad en la muestra, m_s es el peso de sólidos secos de la muestra (kg), y otros símbolos son definidos para la ecuación de temperatura de bulbo húmedo. Durante este periodo, el producto se seca a la misma velocidad que una superficie de agua libre.

- Región de transición: comienzan a aparecer áreas secas en la superficie en el contenido de humedad crítica, el producto ya no se comporta como una superficie de agua libre, y la difusión de la humedad en el producto comienza a limitar la pérdida de humedad en la superficie.
- 4. Región de velocidad decreciente: una vez que la superficie de secado ya no tiene agua sin ligar, la eliminación de la humedad queda limitada por la difusión desde el interior del producto. La Figura 3 muestra una curva de secado en capa fina, M_o es la humedad inicial, M_c es la humedad crítica y M_e es el equilibrio de humedad asintótico entre el aire y el producto.

Figura 3 Curva de secado en capa delgada. Humedad vs Tiempo (Clark, Jung, & Lamsal, 2014).

La región transitoria inicial sólo es significante por un corto periodo al inicio del secado. Durante este tiempo, la entalpía del producto se equilibra con la entalpía del aire, al cambiar la temperatura del producto. El periodo de velocidad constante (de M_o a M_c) es una línea recta en un gráfico de humedad contra temperatura (medido en base seca). Este periodo sólo se observa para productos con alto contenido de humedad. La región de transición sucede entre M_c, esta región (donde la superficie comienza a secarse) es difícil de modelar. Como resultado, muchos estudios de secado utilizan el periodo de velocidad decreciente para modelar la curva completa de secado. El resto de la curva representa el periodo de velocidad decreciente. Muchos autores lo dividen en dos regiones, señalando que parece haber un periodo decreciente inicial y posteriormente un periodo más lento que conduce al equilibrio entre el aire y el producto (Clark et al., 2014).

2.3. Contenido de humedad en las microalgas

En células de algas frescas, el agua constituye de 70-95% del peso en la biomasa centrifugada, incluyendo tanto agua intracelular como extracelular (Silva et al., 2008). En estudios de algas para producir biodiesel o productos de alto valor, la determinación del contenido de agua o contenido de humedad en biomasa de algas es extremadamente importante, ya que el agua afecta fuertemente si estabilidad microbiológica y química, propiedades físicas y procesos tecnológicos (proceso de almacenamiento y distribución) (Richmond & Hu, 2013).

Aunque la determinación del contenido de agua es uno de los análisis realizados con mayor frecuencia en los productos alimenticios, no es una tarea fácil debido a las matrices complejas compuestas de una mezcla de sustancias polares y apolares (Carandang & Ziegler, 1998). Además el agua puede estar presente en los alimentos en al menos tres formas diferentes y con propiedades distintas (agua libre, adsorbida y ligada) (Mathlouthi, 2001). Los métodos para esta determinación se clasifican en directos e indirectos (H.-D. Isengard, 2001). Los métodos directos se basan en técnicas de separación física de agua (desecación por transferencia de agua, destilación, secado en horno), en reacciones químicas selectivas del agua en la muestra (titulación Karl Fischer y métodos con carburo de calcio e hidruro de calcio), o en una combinación de ambos. Los métodos indirectos se basan en las propiedades espectroscópicas de la molécula de agua (RMN, IR, Raman, espectroscopía de microondas) o en las propiedades físicas de la muestra que dependen de su contenido de agua (H.-D. Isengard, 2001; Mathlouthi, 2001).

2.3.1. Método de la estufa

La medición del contenido de agua se lleva a cabo generalmente por gravimetría tras desecar a una temperatura máxima de 105°C. El aumento de la temperatura, mantenida durante un tiempo controlado, debe ser suficientemente alta para eliminar las formas libres de agua, pero no demasiado pues podría causar pérdida significativa de materia orgánica y sales inestables por volatilización (C. J. Zhu & Lee, 1997).

Para la determinación del contenido de humedad de la biomasa de algas, se colocan aproximadamente 5 g de muestras de algas (en polvo o pasta, m₁) en un vidrio de reloj a peso constante (m₀) con tapa. Se deben colocar los vidrios de reloj abiertos en un horno de secado con ventilación durante la noche a 105°C. Después se enfría el vidrio de reloj en un desecador y registra el peso (m₂). Todos los vidrios de reloj del desecador deben estar cerrados para evitar la entrada de humedad. Una vez más se colocan los vidrios de reloj abiertos en un horno de secado durante 1 h a 105°°C y se pesa bajo las mismas condiciones hasta que el peso es constante. El contenido de humedad se calcula como (Richmond & Hu, 2013):

% contenido de humedad a 105°C =
$$\frac{m_1(g) - m_2(g)}{m_1(g) - m_0(g)} \times 100$$

Por lo general, la biomasa de microalgas secada en horno contiene cerca de 5% de contenido de humedad.

El rango de temperaturas utilizadas durante el secado en horno puede causar la descomposición de algunos componentes tales como lípidos, aminoácidos y carbohidratos, y la formación de sustancias volátiles y agua (Rückold, Heinz Grobecker, & Isengard, 2001).

El contenido de agua determinado por el método de secado en horno por lo general no es exacto debido a dos factores: (1) la medición comprende la pérdida de masa debido al agua y a los compuestos volátiles en la muestra o los formados durante el calentamiento y (2) el método no permite la pérdida de todos los tipos de agua, como el agua fuertemente ligada. Por lo tanto el resultado de medida por el método de secado en horno es a menudo llamado "humedad" o más correctamente "pérdida de masa" (H. D. Isengard, 1995).

2.3.2. Métodos de titulación (Karl Fischer)

En contraste con el secado, este es un método específico. Si no se dan reacciones secundarias, sólo se determinará el agua. Este método es rápido (normalmente unos cuantos minutos) y puede ser validado. Con la titulación KF, puede determinarse tanto agua libre como ligada, por ejemplo, agua superficial en cristales o el agua contenida en su interior. El método funciona en un amplio intervalo de concentración de ppm hasta 100% y resultados reproducibles (Bruttel & Schlink, 2003).

Este método se basa en reacciones de oxidación-reducción. Los constituyentes del reactivo de Karl Fischer, son: piridina, metano, iodo y dióxido de azufre (Brown & Sallee, 1967). La valoración se basa en la oxidación de dióxido de azufre por yodo en presencia de agua. Es la misma reacción que la valoración yodométrica de dióxido de azufre en agua (SAS, 2007).

$$I_2 + SO_2 + 2 H_2O \rightarrow 2 HI + H_2SO_4$$

En 1953, Karl Fischer publicó una descripción de "un nuevo procedimiento para la titulación de agua" utilizando la reacción de arriba en un solvente no acuoso anhidro. Sin embargo, para desplazar el equilibrio a la derecha, fue necesario neutralizar los ácidos producidos. Originalmente la piridina se utilizaba como base neutralizante. Más tarde, dietanolamina, seguida por imidazol, fueron utilizados como buffers (SAS, 2007)

Estudios recientes muestran que el metanol, comúnmente utilizado como solvente, contribuye en la reacción. Por tanto, la valoración de Karl Fischer puede ser descrita por las dos siguientes reacciones (RN se refiere a la base utilizada) (SAS, 2007)

$$CH_3OH + SO_2 + RN \rightarrow [RNH]SO_3CH_3$$

$$H_2O + I_2 + [RNH]SO_3CH_3 + RN \rightarrow [RNH]SO_4CH_3 + 2[RNH]I$$

Recientemente han surgido reactivos a base de etanol. Estos tienen la ventaja de ser menos tóxicos, ofreciendo puntos finales más estables y cinéticas más rápidas (SAS, 2007).

2.3.2.1. Consideraciones de pH

La reacción de Karl Fischer sólo puede tener lugar en un cierto intervalo de pH entre 5 y 7. En este intervalo de pH, la reacción se mantiene constante. Si el pH baja demasiado, el punto final se vuelve inactivo o no se alcanza. Si el pH es demasiado alto, las reacciones secundarias se producen haciendo que la titulación no sea estequiométrica. Por lo tanto, podemos decir que los errores que ocurren durante una valoración KF pueden ser debido a un cambio en pH del solvente de valoración (SAS, 2007).

El pH del solvente de valoración se puede probar usando un electrodo de pH combinado y un medidor de pH. El electrodo se calibra primero con soluciones tampón acuosas y después se mide el pH del solvente de valoración (SAS, 2007).

2.3.2.2. Observaciones generales

La muestra se puede introducir directamente en la celda del Karl Fischer o después de una extracción o disolución con un solvente adecuado. La concentración de agua del solvente debe determinarse previamente para restarse del análisis de la muestra. La valoración volumétrica de agua permite el análisis de concentraciones de agua entre 0.1% y 100%. Si una alícuota contiene menos de 1 mg de agua, la determinación dará lugar a un resultado más preciso. Por razones de precisión, el título de la titulación debe ser elegido de manera que la valoración se complete con una demanda de titulante de entre 1 y 10 ml (SAS, 2007).

2.3.2.3. Determinación del punto final

El punto final de la reacción se basa generalmente en la detección de un ligero exceso de yodo que se produce cuando el agua ya no está presente en la celda del Karl Fischer. El exceso de yodo se puede identificar visualmente, fotométricamente o potenciométricamente. El método potenciométrico es el más común para la mayoría de los tituladores actuales en el mercado (SAS, 2007).
2.3.2.4. El solvente

El solvente requerido puede ser elegido libremente por el usuario, dependiendo de las propiedades de disolución de la muestra a ser investigada. Para reactivos basados en metanol, sólo se cumple la estequiometría 1:1 de la reacción de Karl Fischer si hay más de 25% de metanol en la mezcla de la reacción. Se puede utilizar un medio de trabajo libre de metanol, sin embargo, es importante determinar el título del reactivo de KF en el mismo medio de trabajo (SAS, 2007)

Los solventes modernos disponibles en la actualidad presentan una alta capacidad de disolución y como buffer. Estos solventes consisten en dióxido de azufre, una base y metanol o etanol. Las principales ventajas de estos solventes son (SAS, 2007):

- Una valoración más rápida debido a mejores cinéticas de reacción; una ventaja especialmente para la titulación de grandes cantidades de agua.
- Una mejor reproducibilidad, debido a que el entorno de la reacción es estable. El pH y la concentración de dióxido de azufre se mantienen constantes.

Para la valoración de las muestras que producen reacciones secundarias (aldehídos y cetonas), es necesario utilizar un solvente apropiado. La mayoría de los fabricantes de reactivos incluyen la letra K en el nombre comercial de tales solventes (SAS, 2007).

2.3.2.5. El reactivo de valoración

El reactivo de valoración se compone de yodo disuelto en metanol o etanol. A menudo descubrimos que el reactivo tiene tres títulos de 1, 2 y 5 mg de agua por ml de valorante. Incluso si es posible realizar una valoración con más de una bureta, se debe evitar y utilizar en cambio un título de reactivo apropiado y elegir el tamaño de la muestra, permitiendo que se reduzca el tiempo de titulación y mejorando la reproducibilidad. Si el valorador indica un exceso de yodo al final de la valoración, la velocidad de la bureta debe reducirse a la mitad (se utiliza muy poco una velocidad inferior a 5 ml/min) (SAS, 2007).

2.4. Extracción de lípidos

Para los lípidos se utiliza comúnmente la extracción por solvente de la biomasa seca. Durante éste método de extracción, la biomasa de microalgas se encuentra expuesta a una extracción por elución de solvente, el cual extrae los lípidos de las matrices celulares. Una vez que los lípidos son separados

de las células, el solvente extraído, y agua (sólo cuando la extracción se realiza en concentrado algal húmedo), pueden medirse gravimétricamente (Halim et al., 2012).

2.4.1.Extracción por solventes

Los principios de la extracción por solventes orgánicos se basan en concepto químico básico de que "lo semejante disuelve lo semejante". Debido a las interacciones entre sus largas cadenas de ácidos grasos hidrófobos, las lípidos neutros participan entre ellos en interacciones débiles de van der Waals y forman glóbulos en el citoplasma.

Halim et al. (2012) proponen un mecanismo de extracción por solvente (Fig 4).

😑 Lípidos \land Solvente orgánico polar 🔿 Solvente orgánico no polar

Figura 4. Propuesta del mecanismo de extracción del solvente orgánico (Halim et al., 2012).

Cuando una microalga es expuesta a un solvente orgánico no polar, como hexano o cloroformo, el solvente orgánico penetra a través de la membrana celular dentro del citoplasma (paso 1) e interactúa con los lípidos neutros utilizando fuerzas de van der Waals similares (paso 2) para formar un complejo solvente-lípidos (paso 3). Este complejo, llevado por un gradiente de concentración, se difunde dentro de la mayor parte de solvente orgánico, atravesando la membrana celular (paso 4) y la película estática de solvente que rodea la célula (paso 5). Como resultado, los lípidos neutros son extraídos fuera de las células y permanecen disueltos en el solvente orgánico no polar. La

película estática de solvente se forma debido a la interacción entre el solvente orgánico y la pared celular. Esta película rodea la célula microalgal y permanece aún si hay flujo de solvente u agitación (Halim et al., 2012).

Sin embargo, algunos lípidos neutros se encuentran en el citoplasma como un complejo con lípidos polares. Este complejo se encuentra fuertemente unido por puentes de hidrógeno a proteínas en la membrana celular. Las interacciones de van del Waals formadas entre solventes orgánicos no polares y lípidos neutros en el complejo son inadecuadas para interrumpir las uniones lípido-proteína. Por otro lado los solventes orgánicos polares, como metanol u isopropanol, son capaces de interrumpir las uniones lípido-proteína al formar puentes de hidrógeno con los lípidos polares en el complejo. El mecanismo en el cual la mezcla de solvente orgánico no polar/polar extrae los complejos de lípidos unidos a la membrana también se encuentra en la parte inferior de la figura 4 y puede dividirse en 5 pasos (Halim et al., 2012).

La mezcla de solventes orgánicos penetra a través de la membrana celular dentro del citoplasma (paso 1) e interactúa con el complejo lipídico (paso 2). Durante esta interacción el solvente orgánico no polar rodea el complejo de lípidos y forma enlaces de van der Waals con los lípidos neutros del complejo, mientras el solvente orgánico polar también rodea el complejo de lípidos y forma puentes de hidrógeno con los lípidos polares del complejo. Los puentes de hidrógeno son lo suficientemente fuertes para desplazar las uniones lípido-proteína uniendo el complejo de lípidos a la membrana celular. Un complejo solvente-lípidos se forma y se disocia de la membrana celular (paso 3). El complejo solvente-lípidos se difunde dentro del solvente orgánico atravesando la membrana celular (paso 4) y la película estática de solvente que rodea la célula (paso 5). Como tal, la adición de un solvente orgánico polar a uno no polar facilita la extracción de lípidos neutros asociados a las membranas celulares. Sin embargo, el proceso también permite inevitablemente la co-extracción de lípidos polares (Halim et al., 2012).

2.4.1.1. Elección del solvente

Se pueden utilizar muchos solventes. Hexano, etanol, cloroformo y dietil éter pueden extraer ácidos grasos como ácido eicosapentanoico, ácido docosohexanoico (DHA) y ácido araquidónico de varias microalgas (Molina Grima et al., 2003). Con una mezcla de hexano-etanol, es posible obtener más del 98% del contenido de ácidos grasos. Aunque el etanol es un buen solvente, también puede extraer algunos contaminantes de las células como azúcares, aminoácidos, sales, proteínas y

pigmentos, lo cual no es deseable si el propósito de la extracción es obtener sólo lípidos (González et al., 2009).

La mezcla de solventes cloroformo/metanol (1/2 v/v) es la más utilizada para la extracción de lípidos en tejidos vivos. Al utilizar esta mezcla la extracción es rápida, sin embargo el cloroformo es altamente tóxico. El método fue originalmente desarrollado por Folch en 1951 para el aislamiento de lípidos de tejidos de cerebro, por lo que requiere un mayor análisis para poder aplicarlo a la extracción de lípidos en microalgas (Halim et al., 2012).

Por otro lado, mezclas de dicloroetano/metanol y dicloroetano/etanol han sido recomendadas para la extracción de lípidos del alga verde Cladofora, pero ha mostrado tener eficiencia limitada cuando es aplicada a otras especies de microalgas (Halim et al., 2012).

La mezcla de hexano/isopropanol (3/2 v/v) ha sido sugerida como un substituto de baja toxicidad para el sistema cloroformo/metanol, ya que trabaja de forma similar. En la separación bifásica, la fase orgánica superior (hexano con un poco de isopropanol) contiene la mayor parte de lípidos (neutros y polares) mientras la fase acuosa inferior (agua con un poco de isopropanol) contiene la mayor parte no lipídica (proteínas y carbohidratos) de las microalgas (Halim et al., 2012).

El alcohol puro (como butanol, isopropanol y etanol) es barato, volátil y tiene una fuerte afinidad por los lípidos asociados a las membranas debido a su habilidad para formar puentes de hidrógeno. Sin embargo, su naturaleza polar es a su vez una desventaja, ya que limita las interacciones con glóbulos de lípidos neutros que se encuentran libres en el citoplasma. Por esta razón, cuando se utiliza como solvente de extracción de lípidos en microalgas, el alcohol se combina con solventes orgánicos no polares, como el hexano o cloroformo, para asegurar la extracción total de ambas formas de lípidos neutros (Halim et al., 2012).

CAPÍTULO 3

MATERIALES Y MÉTODOS

Cepas

Las microalgas utilizadas en este estudio, *Chlorella vulgaris* y *Chlorella protothecoides*, provienen de la Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI) del Instituto Politécnico Nacional. Para determinar el periodo de cosecha se realizaron las cinéticas de crecimiento de ambas especies.

Medio de cultivo

Se preparó el mismo medio de cultivo para las dos especies de microalgas. Para el escalamiento de cultivos en fotobiorreactores se utilizó agua embotellada y para el raceway se utilizó agua de lluvia filtrada.

Se utilizó Medio Basal de Bold o BBM (por sus siglas en inglés Bold's Basal Medium) cuya formulación se observa en la Tabla 4, debido a que se ha demostrado que las microalgas de estas especies presentan buen crecimiento en este medio de cultivo en comparación con otros (Sharma, Singh & Sharma, 2011). Para la elaboración del medio de cultivo se prepararon 5 diferentes stocks de 1 L cada uno. Para preparar 1 L de medio de cultivo BBM, se agregaron 10 ml de las primeras 3 soluciones, 50 ml de la solución EDTA/KOH, 1 ml de solución de trazas y se aforó a 1 L con agua. No se limitó ningún nutriente en el medio, ya que estos se redujeron gradualmente conforme la población algal incrementó.

Soluciones	Para preparar 1 I	L de Stock	Para preparar 1 L de medio de cultivo
SOLUCIÓN 1	NaNO ₃	25 g	
	MgSO ₄ 7H ₂ O	7.5 g	10 ml
	CaCl ₂ 2H ₂ O	2.5 g	
	NaCl	2.5 g	
SOLUCIÓN DE FOSFATOS	K ₂ HPO ₄	7 g	10 ml
	KH ₂ PO ₄	17.5 g	TO III
SOLUCIÓN DE HIERRO	FeSO ₄ 7H ₂ O	0.498 g	10 ml
SOLUCIÓN EDTA/KOH	EDTA	1 g	50 ml
	КОН	0.62 g	50 mi
SOLUCIÓN DE TRAZAS	Co(NO3)26H2O	0.49 g	
	H ₃ BO ₃	11.42 g	
	ZnSO4 7H2O	8.82 g	1 ml
	MnCl ₂ 4H ₂ O	1.44 g	
	Na2MoO42H2O	0.119 g	
	CuSO4 5H2O	1.57 g	

Tabla 3. Composición del medio Basal de Bold (Bischoff & Bold, 1963).

Cultivo de microalgas

Para comenzar la producción de biomasa, se realizaron resiembras de cultivo de *Chlorella vulgaris* y *Chlorella protothecoides* bajo condiciones ambientales en fotobiorreactores construidos con frascos de vidrio de 1 L y de plástico de 5 L y 10 L. Para la construcción de estos fotobiorreactores (Fig. 5) se realizaron dos orificios en las tapas de los frascos. En un orificio se colocó una manguera de plástico sumergida totalmente en el medio de cultivo el cual funcionó como puerto de aireación y en el segundo orificio se colocó un tubo de vidrio por encima del nivel del medio permitiendo la salida del aire inyectado y los gases generados.

Figura 5. Fotobiorreactores con cultivo de C. vulgaris.

Para la construcción de los fotobiorreactores de 100 L se utilizaron peceras de vidrio cerradas (38.5 cm ancho x 68.5 cm largo x 45 cm alto) con una tapa con dos pequeños orificios, en uno de ellos se colocó una manguera de plástico a la cual se le conectó un difusor de aire rectangular para distribuir aire proveniente de un compresor y el otro orificio funcionó como purga o salida de gases. También se les colocó a lo largo en el centro una mampara divisoria para promover la circulación del medio y mejorar el contacto con la luz. Se instaló una bomba de movimiento y recirculación para acuarios marca Hydor Koralia 1400 y una cabeza de poder para acuarios marca AquaClear Powerhead 402 para generar movimiento en el agua y así evitar la sedimentación.

En todos los casos se realizó la inoculación de los fotobiorreactores al 10% de cultivos en fase de crecimiento exponencial. La duración de cada cultivo durante las resiembras fue de 14 días para pasar de 1 L a 5 L, de 5 L a 10 L, de 10 a 100 L y de 100 L al raceway de 1600 L.

Para los cultivos de microalgas que se realizaron en el raceway de 1600 L se utilizaron paletas que permitieron la circulación del medio de cultivo y evitaron la sedimentación de las microalgas. Los cultivos se llevaron a cabo bajo condiciones ambientales durante los meses de diciembre a febrero y de febrero a abril.

Cinéticas de crecimiento

Las cinéticas de crecimiento se realizaron con alícuotas de las dos especies de microalgas y se midieron en el espectrofotómetro (modelo Cintra 101 GBC Scientific Equipment) a 750 nm. Para medir la cantidad de biomasa presente en ambas especies se utilizó la técnica de peso seco, para lo cual se tomó un volumen conocido del cultivo y se filtró (en un equipo BP-1755 Filterware 47mm Microfiltration Glassware) con una bomba de vacío utilizando membranas de fibra de vidrio

(Whatman GF/F 47 mm, con tamaño de poro de 0.7 μm) pesadas antes del filtrado. Las membranas se colocaron en charolas de aluminio y se secaron en una estufa a 105°C durante 48 horas, se enfriaron en un desecador y después se pesaron (balanza analítica BOECO Germany BBI-31). El peso seco se calculó por diferencia de pesos.

Con los datos de absorbancia y peso seco se realizaron las curvas de crecimiento, con las que se estableció la duración del cultivo y se determinó el tiempo de cosecha.

Durante el crecimiento se realizaron mediciones diarias de pH, temperatura (termómetro digital Dymax), intensidad luminosa (fotodetector Steren) y color del cultivo (equipo MiniScan EZ Hunterlab).

Concentrado de biomasa

Para obtener la biomasa concentrada que se utilizó para el secado, se colocó el cultivo de microalgas en una tolva de 1300 L, para propiciar la sedimentación por gravedad de la biomasa microalgal (Fig. 6).

Figura 6. Tolva de 1300 L para propiciar la sedimentación por gravedad en las microalgas.

Después de 2 días el sobrenadante de la tolva se vació con ayuda de una manguera y se recuperó y almacenó la biomasa concentrada en bidones de 20 L. Se mantuvo en refrigeración a 4°C hasta que se dispuso de ella para realizar las pruebas de secado.

Determinación del Contenido de Humedad

El contenido de humedad de la biomasa concentrada se determinó por triplicado, colocando 3 g de concentrado en una charola de aluminio a peso constante. Las charolas se secaron en un horno a 105 °C durante 48 h y el contenido de humedad se calculó por diferencia de pesos.

Secado de biomasa

El secado se realizó en un dispositivo denominado "túnel de secado para pruebas piloto" con patente número 304462. Este es un prototipo que controla la temperatura y flujo de aire, registrándose la pérdida de peso por humedad mediante computadoras.

Se utilizaron 6 charolas de acero inoxidable de 23.5 cm de diámetro. La biomasa se secó a dos espesores (1.5 y 2.5 mm) y dos temperaturas (40°C y 60°C) para un flujo de aire de 1 m/s. Se registró la pérdida de peso de las muestras a cada minuto. Con los datos de peso que se obtuvieron se realizaron las curvas de velocidad de secado para cada una de las especies de microalgas (Tabla 5).

Tabla 4. Volúmenes a utilizar de biomasa microalgal para lograr los espesores requeridos para el secado.

Espesor (mm)	Volumen por charola (ml)	Número de charolas	Volumen total a utilizar (ml)
1.5	66	6	396
2.5	108.5	6	651

Durante cada tratamiento de secado, cada cierto tiempo una de las charolas fue retirada del secador para tomar muestra para la determinación de agua por el método de titulación Karl Fischer, determinación de contenido de humedad por el método gravimétrico y extracción de lípidos con metanol/hexano.

Titulación por el método de Karl Fischer

Este método se utilizó para realizar las mediciones del contenido de agua en las muestras sometidas a diferentes tratamientos de secado. Para cada tratamiento se tomó del secador una charola diferente cada cierto tiempo durante el secado, se homogenizó la muestra, después se pesó 0.1 g de biomasa y se colocó en viales con tapa a los cuales se les adicionaron 500 µl de metanol. La muestra se sometió a ultrasonido durante 30 min. Para el análisis se tomaron 10 µl de la muestra y se colocó en el titulador Karl Fischer (TitraLab 580, Radiometer Analytical SAS). Para realizar este análisis se utilizó metanol anhidro como solvente y como titulante HYDRANAL Composite 5 de Sigma-Aldrich.

Eficiencia de métodos para la extracción de lípidos

Para determinar que método de extracción se utilizaría en las determinaciones de lípidos durante el secado de microalgas, se realizaron extracciones en biomasa seca de *Chlorella vulgaris* por el método Soxhlet, extracción acelerada de disolventes, por el método Folch modificado y mediante extracción líquido-líquido, utilizando para todos los métodos hexano como solvente. A continuación se muestra la metodología que se siguió para cada método.

Obtención del extracto orgánico total (EOT) por el método Soxhlet

Para este método se utilizaron cartuchos de celulosa en donde se colocaron 3.5 g de muestra seca. La extracción Soxhlet se llevó a cabo con 100 ml de hexano durante 6 horas. Las extracciones se realizaron por triplicado.

Al concluir la extracción se recuperó el solvente en un rotavapor junto con un baño de agua a 35°C y con una bomba de vacío. Los matraces sin solvente se dejaron enfriar en un desecador y se registró su peso para la determinación gravimétrica del EOT de las muestras. Finalmente los EOTs fueron recuperados de los matraces con cloroformo y el extracto se colocó en viales para su posterior análisis cromatográfico.

Obtención del extracto orgánico total (EOT) mediante extracción acelerada de disolventes

La muestra se trituró en un molino de bolas (MM 400, Retsch) durante 10 minutos. Se tomó 1 g de muestra y se mezcló con 5 g de zeolita. Se cargaron las celdas del equipo con la mezcla biomasa/zeolita y se adicionaron 10 g de zeolita. Se llevó a cabo la extracción con hexano, a 150°C y 1500 psi de presión. Se midió el volumen final obtenido de solvente para realizar los cálculos de concentración. Se tomó un volumen conocido del extracto y se colocó en viales a peso constante. El solvente se eliminó con nitrógeno. El contenido de EOT se determinó gravimétricamente en viales.

Obtención del extracto orgánico total (EOT) por el método Folch modificado

Se pesaron 100 mg de biomasa triturada en tubos Falcon, se adicionaron 4 ml de hexano y se sometió a ultrasonido durante 30 min. Se colocó en refrigeración durante 24 horas. Se centrifugo a 6000 rpm durante 10 minutos y recuperó el solvente en tubos Falcon más pequeños. Se realizaron

dos lavados, primero con 4 ml y después con 3 ml de hexano, se agitó durante 1 min y se centrifugó nuevamente. Se recuperó el solvente y se colocó en viales a peso constante. El solvente se eliminó con nitrógeno. El contenido de EOT se determinó gravimétricamente en viales.

Obtención del extracto orgánico total (EOT) mediante el método Folch modificado y posterior extracción líquido-líquido

Se pesaron 100 mg de muestra seca triturada y 1 g de muestra húmeda. Se adicionaron 5 ml de metanol y se sometió a ultrasonido durante 30 min. Después se dejó en agitación continua durante 12 horas a 150 rpm. Se centrifugó la muestra a 6000 rpm durante 10 min. Se recuperó la fase metanolica con pipeta Pasteur. Se realizó un lavado de la biomasa residual con 5 ml de metanol agitando a 150 rpm durante una hora y se centrifugó de nuevo para recuperar la fase metanolica. Posteriormente se realizó una extracción líquido-líquido. Al metanol y lípidos extraídos se les adicionaron 6 ml de hexano y se agitó durante una hora a 250 rpm. Se agregaron 6 ml de agua y se formaron dos fases: metanol/agua y hexano/lípidos. Se recuperó la fase de hexano y se realizó la cuantificación gravimétrica.

Preparación de las muestras para el análisis cromatográfico

Se resuspendieron los extractos con 1 ml de hexano en tubos HACH y se realizaron tres lavados con 1 ml de hexano HPLC. Se volatilizó el hexano con flujo de nitrógeno y se adicionó 1 ml de reactivo de metilación (HCl/Metanol 0.5 N). Se agitó en vórtex y se colocó en termobloque a 80°C durante 2 horas. Se adicionaron 200 µl de agua destilada y agitó para detener la reacción. Se adicionó 1 ml de hexano grado HPLC y se agitó durante 15 segundos. Se dejó la mezcla en reposo durante 10 min y se recuperó la fase orgánica con una jeringa para insulina y se colocó en un nuevo tubo HACH. Se realizó un lavado con 0.5 ml de hexano y se recuperó de nuevo la fase orgánica con jeringa. Al extracto se le añadió una pequeña cantidad de sulfato de sodio anhidro para retirar la humedad presente. Se filtró el extracto a través de una membrana de 0.2 µm de diámetro de poro y se depositó en un vial de 2 ml. Se almacenaron las muestras a 0°C para evitar la volatilización en caso de no ser analizados inmediatamente.

Análisis de ácidos grasos mediante cromatografía de gases

Los metil esteres de los ácidos grasos de los métodos y del estándar FAME SUPELCO 37 fueron analizados por cromatografía de gases en equipo Clarus 500 de Perkin Elmer bajo las siguientes condiciones: helio como gas acarreador con un flujo de 0.53 ml/min y una presión de 15.2 psi, la temperatura del inyector fue de 230°C. Se empleó un detector de ionización de llama (FID) a 250° con la siguiente rampa de temperaturas: inició a 140°C, se mantuvo constante 5 minutos, con un incremento de 8°C cada minuto hasta 240°C y se mantuvo a 240°C por 5 min (Morales et al., 2013). Se empleó una columna capilar AT-WAX de 30 m de longitud, 0.25 mm de diámetro interno y 0.2 µm de espesor de película de fase estacionaria. La cantidad de analito utilizado fue de 2 µL.

Eficiencia de solventes para la extracción de lípidos neutros

Adicionalmente se realizaron extracciones en biomasa liofilizada de *Nannochloropsis salina*, proporcionada por el Departamento de Química de la Universidad de Davis, California, a fin de elegir un solvente adecuado para la extracción de lípidos neutros específicamente. Para la extracción de lípidos se utilizaron tres diferentes mezclas de solventes (cloroformo/metanol, hexano/isopropanol y 2-etoxietanol). Se trituraron 30 mg de biomasa de microalgas y se les adicionó 3 ml de cloroformo en hielo y se sometió a ultrasonido durante 1 minuto. Se adicionó 2.5 ml de la mezcla 2:1 de metanol/cloroformo y se sometió nuevamente a ultrasonido durante 1 minuto. Se adicionaron 4.5 ml de buffer de fosfatos y se agitó la muestra. Se centrifugó durante 20 minutos a 5000 rpm y la fase orgánica se colocó en viales a peso constante. Se adicionaron 3 ml de cloroformo a la muestra sobrante para asegurar la completa extracción de lípidos de la biomasa. Finalmente se evaporó el solvente con un rotavapor de los viales a peso constante y se obtuvo el contenido de lípidos gravimétricamente. Se utilizó la misma metodología para las tres mezclas de solventes.

Al finalizar la extracción se realizó cromatografía en capa fina de los extractos utilizando una mezcla de hexano/éter dietílico/ácido acético (80:20:1). La placa se reveló con una solución de permanganato potásico. Como estándar se colocó aceite vegetal. Adicionalmente se realizó en estos extractos el ensayo de microplaca con rojo de Nilo para la cuantificación de lípidos neutros como se mencionará más adelante.

Análisis de lípidos neutros mediante fluorescencia con rojo de Nilo

Los extractos de microalgas de las extracciones mencionadas anteriormente se disolvieron con dos partes de metanol. En una microplaca de polipropileno se colocaron 80 µl de los extractos diluidos en una línea. En la siguiente línea se colocaron 10, 30, 60, 90 y 120 µl de estándar preparado con aceite de maíz. El solvente se evaporó en una parrilla de calentamiento a 55°C por 30 min. Los lípidos se disolvieron en la microplaca con 25 µl de alcohol isopropílico. Se añadieron 200 µl de una solución 0.5 µg/ml de rojo de Nilo en todas las celdas. Después se adicionaron 20 µl de cloro al 3%. Se incubó a temperatura ambiente durante 30 minutos y después se leyó la fluorescencia a 530/575 nm durante una hora.

DISEÑO EXPERIMENTAL

Los efectos de la temperatura del aire de secado, la especie de microalga y el espesor de las muestras se analizarán a través de un análisis factorial 2³ en respuesta de los miligramos de EOT por gramo de microalga seca, obtenidos de cada tratamiento. Esto se realizará para poder determinar los factores que ejercen mayor influencia en la pérdida de lípidos durante el proceso de secado de biomasa húmeda de las microalgas.

Las variables independientes de este estudio serán la temperatura del aire de secado, el espesor de la biomasa húmeda y la especie de microalga. Los valores de estos factores serán 40 y 60°C para la temperatura del aire de secado, 1.5 y 2.5 mm para el espesor de las muestras y *Chlorella vulgaris* y *Chlorella protothecoides* para la especie de microalga (Tabla 5).

Tabla 5. Factores y niveles para la realización del secado convectivo.

FACTORES	NIVELES		
Temperatura de secado	40°C	60°C	
Espesor del material	1.5 mm	2.5 mm	
Especie de microalga	C. vulgaris (CV)	C. protothecoides (CP)	

Se realizarán 8 tratamientos diferentes para el secado (Tabla 6).

Tabla 6. Tratamientos para el secado de biomasa microalgal.

T1	CV	40°C	1.5 mm
T2	CV	40°C	2.5 mm
Т3	CV	60°C	1.5 mm
T4	CV	60°C	2.5 mm
Т5	СР	40°C	1.5 mm
Т6	СР	40°C	2.5 mm
Т7	СР	60°C	1.5 mm
Т8	СР	60°C	2.5 mm

Por cada tratamiento se realizará la extracción de lípidos de cada muestra por triplicado y se calculará la desviación estándar y varianza para demostrar la confiabilidad de los resultados.

CAPÍTULO 4

RESULTADOS

Cinéticas de crecimiento

Las curvas de crecimiento (Fig. 7) muestran un comportamiento similar en los primeros días para las dos especies de microalgas, sin embargo *C. vulgaris* muestra un incremento en la absorbancia del cultivo en comparación con *C. protothecoides*. A partir del día 5 de cultivo la absorbancia permanece constante para *C. vulgaris*, hasta llegar al día 20 en donde se logra la máxima absorbancia del cultivo y al día 21 ésta comienza a disminuir, indicando la posible degradación de pigmentos en las células. En *C. protothecoides* se observó un comportamiento similar, sin embargo se obtuvo una mayor absorbancia al final del cultivo que para *C. vulgaris*.

Al graficar la concentración por días de cultivo, la curva para *C. vulgaris* (Fig. 8) mostró una mayor concentración de microalgas aun cuando los cultivos presentaban la misma absorbancia al día uno. Las dos especies mostraron un comportamiento similar, sin embargo la fase de crecimiento exponencial fue más evidente para *C. protothecoides*, aumentando en 8 días casi tres veces su concentración inicial. Al día 21 la concentración para ambas especies fue similar. En estas curvas no se muestra la fase de muerte celular pues las curvas solo se realizaron durante 21 días de cultivo.

Figura 7. Cinéticas de crecimiento de las dos especies de microalgas (tiempo vs absorbancia a 750 nm)

Figura 8. Cinéticas de crecimiento de las dos especies de microalgas (tiempo vs concentración mg/L)

Cinéticas de secado

El contenido de agua que tuvo el concentrado obtenido por sedimentación de *C. protothecoides* fue de 40.6 g agua/g biomasa seca, lo que equivale a un 97.6% BH (g agua/g biomasa húmeda). El proceso de secado se llevó a cabo mediante evaporación del medio de cultivo, lo cual provocó que los espacios entre las células se redujeran para dar como producto final láminas delgadas de microalgas. El comportamiento que presentaron los diferentes tratamientos térmicos de la biomasa microalgal fue similar. Las curvas (Fig. 9) mostraron una pendiente menor en los experimentos realizados a 40°C a diferencia de los que se llevaron a 60°C, por lo que podemos decir que existe una relación inversa entre la temperatura con respecto al tiempo de secado. También se puede observar que los tiempos de secado fueron mayores para un espesor de 2.5 mm con respecto al espesor de 1.5 mm, desecados a la misma temperatura.

------ 60°C 1.5 mm ······· 60°C 2.5 mm − − − 40°C 1.5 mm --- · · 40°C 2.5 mm

Figura 7. Curva de pérdida de peso durante el secado (Tiempo vs Contenido de Humedad) en Chlorella protothecoides.

En las curvas de velocidad de secado (Fig. 10) se puede observar que conforme la temperatura aumenta, la velocidad de secado en *C. protothecoides* es mayor. También se muestra que para ambas temperaturas, la velocidad de secado es mayor para la temperatura de 60°C con respecto a 40°C. En las curvas de velocidad de secado (Fig. 11) de los experimentos realizados a 40°C, se aprecian las dos etapas principales que comprenden el proceso de deshidratación: el periodo de velocidad constante y de velocidad decreciente.

Figura 9. Curva de velocidad de secado (Contenido de humedad vs Velocidad de secado) en Chlorella protothecoides.

El contenido de agua que tuvo el concentrado obtenido por sedimentación de *C. vulgaris* fue de 21.2 g agua/g biomasa seca, lo que equivale a un 95.5% BH (g agua/g biomasa húmeda). En las curvas de secado (Fig. 12) se observa que el comportamiento que presentaron los diferentes tratamientos térmicos de la biomasa microalgal fue similar. Las curvas mostraron una pendiente significativamente mayor en el experimento realizado a 40°C y con un espesor de 2.5 mm. También se puede observar que los tiempos de secado fueron menores para el espesor de 1.5 mm con respecto al espesor de 2.5 mm, desecados a 40°C. El comportamiento del secado a 60°C y 2.5 mm comparado con el tratamiento a 40°C y 1.5 mm es similar, pues las dos líneas se observan superpuestas en el gráfico, sin embargo el tiempo de secado fue menor para el escado a 40°C.

Figura 10. Curva de pérdida de peso durante el secado (Tiempo vs Contenido de Humedad) en Chlorella vulgaris.

Al graficar la velocidad de secado contra el tiempo (Fig. 13), se observa una mayor velocidad de secado *C. vulgaris* para una temperatura de 60°C y un espesor de 1.5 mm en comparación con los demás tratamientos. Existe variación en los tiempos de secado de acuerdo a las condiciones de secado utilizadas, siendo el menor de 77 min y el mayor de 190 min.

En las curvas de velocidad de secado (Fig. 14) se aprecian las dos etapas principales que comprenden el proceso de deshidratación: el periodo de velocidad constante y de velocidad decreciente únicamente para el secado a 60°C y 1.5mm. En el periodo de velocidad decreciente se observó el mismo comportamiento para las temperaturas de 40°C.

Figura 12. Curva de velocidad de secado (Tiempo vs Velocidad de secado) en Chlorella vulgaris.

Figura 11. Curva de velocidad de secado (Contenido de humedad vs Velocidad de secado) en Chlorella vulgaris.

Determinación del contenido de agua por el método de titulación Karl Fischer

En los resultados obtenidos por el método de titulación Karl Fischer en las muestras de *C. protothecoides* durante el secado se puede observar que el contenido inicial de agua del concentrado antes del secado fue de 1371 mg H₂O/g biomasa. Las curvas de los tratamientos realizados a 40°C 1.5 mm y 60°C 2.5 mm presentan tendencia similar, sin embargo los contenidos de agua son diferentes, pues a los 20 min de secado, las muestras a 60° 2.5 mm presentan 908.2 g agua/g biomasa, mientra s que la muestra a 40°C 1.5 mm contiene 697.4 mg agua/g biomasa. Los contenidos de agua en todas las muestras son similares a los 60 min.

Figura 13. Curva de pérdida de agua en la biomasa de Chlorella protothecoides durante el secado a 40°C, 1.5 mm

Figura 14. Curva de pérdida de agua en la biomasa de Chlorella protothecoides durante el secado a 60°C, 1.5 mm

Figura 15. Curva de pérdida de agua en la biomasa de Chlorella protothecoides durante el secado a 40°C, 2.5 mm

Figura 16. Curva de pérdida de agua en la biomasa de Chlorella protothecoides durante el secado a 60°C, 2.5 mm

Comparación de métodos de extracción con hexano

Cuando se realizó la extracción con metanol, seguida de una extracción líquido-líquido con hexano, los porcentajes de EOTs obtenidos de los diferentes tratamientos térmicos se encontraron en un rango entre 71.63 y 131.30 (mg de EOT/ g de biomasa seca). En la Figura 19 se observa que la muestra desecada a 60°C y 2.5 mm presentó el mayor porcentaje de EOT, mientras que cuando se secó a 60°C y 1.5 mm el porcentaje de EOT fue el menor de todos los tratamientos.

En los resultados de la extracción acelerada de disolventes, los porcentajes de EOTs obtenidos de los diferentes tratamientos térmicos se encontraron en un rango entre 87.07 y 99.20 (mg de EOT/ g de biomasa seca). En la Figura 20 se observa que la muestra desecada a 60°C y 1.5 mm presentó el mayor porcentaje de EOT, mientras que cuando se secó a 60°C y 3.5 mm el porcentaje de EOT fue el menor de todos los tratamientos.

Al realizar la extracción con hexano por el método Folch modificado, los porcentajes de EOTs obtenidos de los diferentes tratamientos térmicos se encontraron en un rango entre 17.42 y 36.35 (mg de EOT/ g de biomasa seca). En la Figura 21 se observa que la muestra desecada a 60°C y 1.5 mm presentó el mayor porcentaje de EOT, mientras que cuando se secó a 60°C y 3.5 mm el porcentaje de EOT fue el menor de todos los tratamientos. Esta tendencia fue similar a la del método de extracción acelerada de disolventes, sin embargo los contenidos de EOT fueron menores para este método.

Los porcentajes de EOTs obtenidos mediante extracción Soxhlet de *C. vulgaris* de los diferentes tratamientos térmicos se encontraron en un rango entre 24.84 y 29.22 (mg de EOT/ g de biomasa seca). En la Figura 22 se observa que los porcentajes de EOT para un espesor de 3.5 mm resultan mayores que para el espesor de 1.5 mm. En cuanto a la temperatura de secado, se obtuvo un mayor porcentaje de lípidos a 40°C pero únicamente para un espesor de 2.5 mm, ya que al utilizar un espesor de 1.5 y 3.5 mm a la misma temperatura se obtuvieron menos lípidos en las muestras secas. Así mismo se observó que al utilizar mayores espesores se obtuvieron mayores porcentajes de EOT para ambas temperaturas, que cuando se utilizan espesores de 1.5 mm.

Figura 17. Miligramos de extracto orgánico total por gramo de microalga seca obtenido en la extracción por el método Folch modificado/líquido-líquido en biomasa seca de C. vulgaris

Figura 18. Miligramos de extracto orgánico total por gramo de microalga seca obtenido en la extracción acelerada de disolventes en biomasa seca de C. vulgaris

Figura 20. Miligramos de extracto orgánico total por gramo de microalga seca obtenido en la extracción por el método Folch modificado en biomasa seca de C. vulgaris

Extracción método Soxhlet

Figura 19. Miligramos de extracto orgánico total por gramo de microalga seca obtenido en la extracción Soxhlet en biomasa seca de C. vulgaris

Al comparar todos los métodos de extracción con los tratamientos de secado se puede observar que los mayores contenidos de EOT se obtuvieron al realizar la extracción con metanol/hexano, seguido del método de extracción acelerada de disolventes. Mientras que los menores contenidos de EOT se obtuvieron con el método de extracción Soxhlet, seguido del método con hexano en frío.

Figura 21. Miligramos de extracto orgánico total por gramo de microalga seca obtenido en diferentes métodos de extracción con hexano en biomasa seca de C. vulgaris

Análisis estadístico de los métodos de extracción con hexano

Para comprobar la significancia de los efectos de los factores (temperatura y espesor) en las extracciones de lípidos de microalgas, se llevó a cabo el análisis de varianza (ANOVA) en los datos de cada uno de los métodos de extracción, utilizando el software NCSS 11. En el análisis, el nivel de significancia se fijó para un valor de P de 0.05.

Al analizar estadísticamente los diferentes métodos de extracción por separado, podemos observar que para el método Folch modificado/líquido-líquido en biomasa seca de *C. vulgaris*, el contenido de EOT es mayor cuando se secó a 40°C. Mientras que el mayor contenido de EOT se observó para un espesor de 2.5 mm.

Por otro lado, al comparar los tratamientos con el contenido de EOT se observa que el mayor contenido de EOT se obtuvo con el secado a 60°C y 2.5 mm, mientras que el menor contenido de EOT se obtuvo cuando se secó a 60°C y 1.5 mm, siendo este secado el de menor duración.

Además, los resultados muestran una gran diferencia en los contenidos de EOT para el secado con un espesor de 1.5 mm cuando se secan a diferente temperatura, mientras que para el espesor de 3.5 mm no parece haber gran diferencia entre los contenidos de EOT a diferentes temperaturas.

El análisis de varianza de los resultados de la extracción Folch con metanol seguido de extracción líquido-líquido con hexano indica que, existe diferencia significativa (para P=0.05) en el contenido de EOT para los diferentes tratamientos.

Means Plot of Contenido de EOT (mg EOT/g ss) by Espesor (mm)

Figura 22. Gráficos de medias de la extracción Folch con metanol seguido de extracción líquido-líquido con hexano

Para el método de extracción acelerada con disolventes en biomasa seca de *C. vulgaris*, al igual que el método anterior, el contenido de EOT es mayor cuando se secó a 40°C. Sin embargo, el mayor contenido de EOT se observó para un espesor de 1.5 mm.

Al comparar los tratamientos con el contenido de EOT se observa que el mayor contenido de EOT se obtuvo con el secado a 60°C y 1.5 mm, mientras que el menor contenido de EOT se obtuvo cuando se secó a 60°C y 3.5 mm.

Además, los resultados muestran una gran diferencia en los contenidos de EOT para los secados con espesores de 2.5 y 3.5 mm cuando se secan a diferente temperatura, mientras que para el espesor de 1.5 mm no parece haber gran diferencia entre los contenidos de EOT a diferentes temperaturas.

Figura 23. Gráficos de medias del método de extracción ASE con hexano

Para el método de Folch modificado en biomasa seca de *C. vulgaris*, al comparar las temperaturas de secado no se observa gran diferencia en los contenidos de EOT. Sin embargo, al comparar los espesores de la biomasa concentrada que se secó, el mayor contenido de EOT se observó para un espesor de 1.5 mm, al igual que para el método de extracción anterior.

Al relacionar el espesor y temperatura con el contenido de EOT, se observan los mismos resultados que en el método de extracción anterior. El mayor contenido de EOT se obtuvo con el secado a 60°C y 1.5 mm, mientras que el menor contenido de EOT se obtuvo cuando se secó a 60°C y 3.5 mm.

Además, los resultados muestran en todos los casos que el secado a 1.5 mm presenta el mayor contenido de EOT.

Figura 24. Gráfico de medias de la extracción Folch modificado con hexano

Para el método de extracción Soxhlet en biomasa seca de *C. vulgaris*, al igual que los demás métodos, el contenido de EOT es mayor cuando se secó a 40°C. Sin embargo, el mayor contenido de EOT se observó para un espesor de 3.5 mm.

Al comparar los tratamientos con el contenido de EOT se observa que el mayor contenido de EOT se obtuvo con el secado a 40°C y 2.5 mm, mientras que el menor contenido de EOT se obtuvo cuando se secó a 40°C y 1.5 mm.

El análisis de varianza de los resultados de la extracción Soxhlet con hexano indica que, no existe diferencia significativa (para P=0.05) en el contenido de EOT para los diferentes tratamientos.

Figura 25. Gráfico de medias del método de extracción Soxhlet con hexano

Análisis cromatográfico de las extracciones con hexano

Identificación de ácidos grasos en el estándar

En el análisis del estándar FAME SUPELCO de 37 componentes se obtuvieron 33 picos de ácidos grasos, los cuales fueron identificados en un cromatógrafo de gases acoplado a un espectrómetro de masas, con una columna capilar HP-88 (Agilent 112-8867) de cyanopropil-siloxano de 60 m de longitud, 0.25 mm de diámetro interno y 0.2 µm de grosor de película. Se obtuvo el tiempo de retención de cada uno de los ácidos grasos.

Los cuatro picos no separables fueron:

- 1. Acido butírico (C4:0)
- 2. Ácido eláidico (C18:1n9t)
- 3. Ácido linoleláidico (C18:2n6t)
- 4. Ácido behénico (C22:0)

Figura 26. Cromatograma del estándar FAME SUPELCO 37 (CRM47885) componentes analizados en la columna AT-WAX. Programa de temperatura del horno: 140°C por 5min, 8°C/min hasta 240°C por 15 min.

Para el análisis cualitativo de las muestras se estableció una curva estándar de cada uno de los ácidos grasos presentes con cuatro diferentes concentraciones.

El análisis cromatográfico se realizó únicamente en las extracciones realizadas con hexano en muestras de diferentes tratamientos de secado de *C. vulgaris*.

Comparación de EOT durante los tratamientos de secado

Al analizar el contenido de extracto orgánico total durante el tiempo de secado, para *C. protothecoides* podemos observar que transcurridos 20 min de secado, el tratamiento con mayor contenido de EOT fue el secado a 60°C y 1.5 mm y el menor contenido de EOT se obtuvo en el secado a 60°C y 2.5 mm. A los 40 minutos se observó el mismo comportamiento para todos los tratamientos de secado. A los 60 minutos se observa que el mayor contenido de EOT se obtuvo en el secado a 40°C y 1.5 mm mientras que el menor contenido de EOT fue el del secado a 60°C y 2.5 mm. Finalmente en muestras secas se observó que el mayor contenido de EOT se obtuvo para el tratamiento a 40°C y 2.5 mm. Mientras que el menor contenido de lípidos se observó en el tratamiento a 40°C y 1.5 mm. Para todos los tratamientos de secado se observa la misma tendencia, en donde los contenidos de EOT van disminuyendo a medida que transcurre el secado. Sin embargo, se observó que para el tratamiento a 40°C y 1.5 mm no hubo una disminución significativa durante los 40 y 60 minutos de EOT disminuye considerablemente en los primeros 20 minutos, sin embargo al finalizar el secado, el tratamiento a 40°C y 2.5 mm, que es el tratamiento con mayor espesor, el contenido de EOT disminuye do a 00°C y 2.5 mm, que es el tratamiento con mayor espesor.

Tiempo de secado (min)

Figura 27. Comparación del EOT obtenido con metanol/hexano durante el secado de C. protothecoides

Los resultados presentados anteriormente consideran únicamente el tiempo de secado pero no se relaciona el contenido de humedad con la cantidad de EOT, por lo tanto se realizó el mismo análisis en las dos especies de microalgas: *C. protothecoides* y *C. vulgaris*.

Figura 28. Comparación del contenido de humedad con el contenido de EOT obtenido con metanol/hexano durante el secado de C. protothecoides

Los resultados obtenidos muestran que para *C. protothecoides*, el contenido de EOT inicial fue de 454.61 mg/g ss y fue disminuyendo a medida que disminuyó el contenido de humedad. Para un contenido de humedad de 35 g H₂O/g ss, la mayor cantidad de EOT se obtuvo en el tratamiento a 40°C y 1.5 mm, mientras que la menor cantidad de EOT se obtuvo con el tratamiento a 40°C y 2.5 mm. Para un contenido de humedad de 27 g H₂O/g ss, la mayor cantidad de EOT se obtuvo en el tratamiento a 60°C y 1.5 mm, mientras que la menor cantidad de 0.1 g H₂O/g ss, la mayor cantidad de EOT se obtuvo en el tratamiento a 60°C y 2.5 mm. Para un contenido de humedad de 0.1 g H₂O/g ss, la mayor cantidad de EOT se obtuvo en el tratamiento a 40°C y 2.5 mm, mientras que la menor cantidad de EOT se obtuvo en el tratamiento a 60°C y 1.5 mm, sin embargo, los resultados no muestran una gran diferencia entre los contenidos de EOT al finalizar el secado.

En *C. vulgaris*, el contenido de EOT inicial fue mucho más bajo que el de *C. protothecoides*. Se obtuvieron 107.01 mg/g ss y disminuyó con el secado. Para un contenido de humedad de 14 g H₂O/g ss se observa que el secado a 40°C y 1.5 mm conserva la mayor cantidad de EOT, mientras que el secado a 60°C y 2.5 mm muestra una menor cantidad de EOT. Cuando el contenido de humedad de la biomasa es de 5 g y 2 g H₂O/g ss, se observa que el mayor contenido de EOT se obtuvo con el tratamiento a 40°C y 1.5 mm mientras que el menor contenido de EOT fue el tratamiento a 40°C y 2.5 mm. Finalmente para un contenido de humedad de 0.1 g H₂O/g ss, el mayor contenido de EOT se observa que el tratamiento a 40°C y 2.5 mm. Al comparar todos los secados, podemos observar que el tratamiento a 40°C y 1.5 mm conserva la mayor cantidad de EOT durante el secado. Sin embargo, a diferencia de los EOTs de la especie anterior, *C. vulgaris* no presenta relación entre el contenido de humedad y la pérdida de contenido lipídico.

Figura 29. Comparación del contenido de humedad con el contenido de EOT obtenido con metanol/hexano durante el secado de C. vulgaris

Análisis estadístico del contenido de EOT durante el secado convectivo en *C. protothecoides*

Para comprobar la significancia de los efectos de los factores (temperatura y espesor) en las extracciones de lípidos de microalgas durante el secado, se llevó a cabo el análisis de varianza (ANOVA) utilizando el software NCSS 11. En el análisis, el nivel de significancia se fijó para un valor de P de 0.05.

En los gráficos de ANOVA podemos observar que para *C. protothecoides*, el contenido de EOT es mayor cuando el contenido de humedad es mayor y conforme va disminuyendo el contenido de humedad también disminuye el contenido de EOT. Al comparar las temperaturas podemos observar que el contenido de EOT es similar para las dos temperaturas. Cuando comparamos los espesores, podemos observar que el mayor contenido de EOT se obtuvo al secar con un espesor de 1.5 mm.

Por otro lado, al comparar los contenidos de EOT con el contenido de humedad y la temperatura podemos observar que a mayor contenido de humedad hay mayor contenido de EOT, este comportamiento se observa para las dos temperaturas.

Figura 30. Gráfico de medias del contenido de EOT con relación a la temperatura y espesor en C. protothecoides durante el secado

Figura 31. Gráfico de medias del contenido de EOT con relación al espesor y contenido de humedad en C. protothecoides durante el secado

Análisis estadístico del contenido de EOT durante el secado convectivo en *C. vulgaris*

En los gráficos de ANOVA podemos observar que para *C. vulgaris*, el contenido de EOT es mayor para una humedad inicial de 21 g H20/g ss, sin embargo, no parece haber relación entre los demás datos de humedad y contenido de EOT.

Figura 32. Gráfico de medias del contenido de EOT en relación al contenido de humedad, temperatura y espesor en C. vulgaris durante el secado

Al comparar las temperaturas podemos observar que el contenido de EOT es similar para las dos temperaturas. Cuando comparamos los espesores, podemos observar que el mayor contenido de EOT se obtuvo al secar con un espesor de 1.5 mm, al igual que en *C. protothecoides*.

Por otro lado, al comparar los contenidos de EOT con el contenido de humedad y la temperatura podemos observar que para el contenido de humedad inicial, a mayor contenido de humedad hay mayor contenido de EOT para las dos temperaturas, sin embargo este comportamiento no se observa en los demás datos.
Comparación de EOT después de los tratamientos de secado (extracción Folch con metanol/extracción líquido-líquido con hexano)

Los miligramos de EOT de *C. protothecoides* obtenidos mediante extracción con metanol por el método Folch seguido de extracción líquido-líquido con hexano, después de los diferentes tratamientos térmicos se encontraron en un rango entre 47.74 y 54.54 (mg EOT/g biomasa seca). En la Fig. 27 se observa que se obtuvo un mayor contenido de EOT a 40°C pero únicamente para un espesor de 2.5 mm, ya que al utilizar un espesor de 1.5 mm a la misma temperatura se obtuvieron menos lípidos.

Los miligramos de EOT en relación al peso de la biomasa de *C. vulgaris* obtenidos de los diferentes tratamientos térmicos se encontraron en un rango entre 46.11 y 72.89 (mg EOT/g biomasa seca). En la Fig. 27 se muestra que los mayores contenidos de EOT se obtuvieron cuando se secó a 40° y 1.5 mm, mientras que los menores contenidos de EOT se obtuvieron al secar la muestra a 60°C y 2.5 mm. También se puede observar que los contenidos de EOT son similares entre los tratamientos con los mismos espesores. Así mismo, se observa que los mayores contenidos de EOT se necesidos de EOT se presentan en los tratamientos con menores tiempos de secado.

C. vulgaris C. protothecoides

Figura 33. Comparación de los miligramos del extracto orgánico total (EOT) obtenido de la extracción Folch modificado con metanol y posterior extracción líquido-líquido con hexano, de biomasa de microalgas desecada bajo diferentes condiciones

La comparación de los resultados gravimétricos de los EOTs entre las dos microalgas muestra que para todas las condiciones de secado, *C. vulgaris* presenta mayor porcentaje de EOT en comparación con *C. protothecoides*.

Análisis estadístico de la comparación de EOT después de los tratamientos de secado (extracción Folch con metanol/extracción líquido-líquido con hexano)

En los gráficos de ANOVA podemos observar que el contenido de EOT al finalizar el secado, es mayor para *Chlorella vulgaris*. También se puede observar que el mayor contenido de EOT se obtuvo al secar con una temperatura de 40°C.

También observamos que el mayor contenido de EOT se obtuvo al secar con un espesor de 1.5 mm. En el último gráfico podemos observar el mismo comportamiento para las dos especies cuando se compara la temperatura y la especie con el contenido de EOT, siendo mayor para ambas especies el contenido de EOT cuando se secó a 40°C.

Cuando se comparó el contenido de EOT con la especie y el espesor de biomasa, podemos observar que se obtuvo un mayor contenido de EOT cuando se secó con un espesor de 1.5 mm sólo en el caso de *C. protothecoides*, ya que para *C. vulgaris* se observó lo contrario.

En el gráfico en donde se comparó la temperatura y el espesor con el contenido de EOT, podemos observar que para ambas temperaturas se observan mayores contenidos de EOT cuando se seca con un espesor de 1.5 mm.

Figura 34. Gráficos de medias de la comparación de EOT obtenidos mediante el método Folch con metanol /extracción líquido-líquido con hexano después de los tratamientos de secado en C. vulgaris con la especie y temperatura de secado

Figura 35. Gráficos de medias de la comparación de EOT obtenidos mediante el método Folch con metanol /extracción líquido-líquido con hexano después de los tratamientos de secado en C. vulgaris con la especie y el espesor de la biomasa

El análisis de varianza de los resultados de la extracción Soxhlet con hexano indica que, existen diferencias significativas (para P=0.05) entre especies de microalgas. Los resultados también sugieren que existen diferencias significativas (para P=0.05) entre los dos espesores de biomasa empleados para el secado.

Figura 36. Gráficos de medias de la comparación de EOT obtenidos mediante el método Folch con metanol /extracción líquido-líquido con hexano después de los tratamientos de secado en C. vulgaris con la especie y la temperatura de secado

Comparación de EOT después de los tratamientos de secado (extracción Soxhlet con hexano)

Los miligramos de EOTs en relación al peso de la biomasa de *C. protothecoides* obtenidos mediante extracción Soxhlet con hexano después de los diferentes tratamientos térmicos se encontraron en un rango entre 47.46 y 58.13 (mg EOT/g biomasa seca). En la Fig. 28 se observa que se obtuvo un mayor contenido de EOT a 60°C pero únicamente para un espesor de 1.5 mm, ya que al utilizar un espesor de 1.5 mm a la misma temperatura se obtuvieron menos lípidos, al igual que en la extracción con el método anterior.

Figura 37.Comparación de los miligramos del extracto orgánico total (EOT) obtenido de la extracción Soxhlet con hexano, de biomasa de microalgas desecada bajo diferentes condiciones con relación a los gramos de sólido seco de la biomasa

Los miligramos de EOT en relación al peso de la biomasa de *C. vulgaris* obtenidos de los diferentes tratamientos térmicos se encontraron en un rango entre 24.81 y 29.25 (mg EOT/g biomasa seca). En la Fig. 28 se muestra que los mayores contenidos de EOT se obtuvieron cuando se secó a 40° y 2.5 mm, mientras que los menores contenidos de EOT se obtuvieron al secar la muestra a 40°C y 1.5 mm.

La comparación de los resultados gravimétricos de los EOTs entre las dos microalgas muestra que para todas las condiciones de secado, *C. protothecoides* presenta mayor porcentaje de EOT en comparación con *C. vulgaris,* a diferencia del método de extracción anterior. También, los resultados indican que no existe relación entre el tiempo de secado y el contenido de EOT, pues este comportamiento únicamente corresponde a *C. protothecoides*.

Análisis estadístico de la comparación de EOT después de los tratamientos de secado (extracción Soxhlet con hexano)

En los gráficos de ANOVA podemos observar que el contenido de EOT al finalizar el secado, es mayor para *Chlorella protothecoides*. También se puede observar que el mayor contenido de EOT se obtuvo al secar con una temperatura de 60°C. Los resultados muestran que el mayor contenido de EOT se obtuvo al secar con un espesor de 1.5 mm. Sin embargo no parece existir diferencia en el contenido de EOT cuando se cambia el espesor.

Cuando se compararon las especies con la temperatura, se observa que el contenido de EOT es mayor a 60°C, sólo para *C. protothecoides*. El mayor contenido de EOT se obtuvo al secar con un espesor de 1.5 mm a 60°C. Cuando se compara la especie con el espesor podemos observar que el mayor contenido de EOT se obtiene al secar *C. protothecoides* con 1.5 mm de espesor, siendo el espesor con el que se obtiene menor contenido de EOT cuando se seca *C. vulgaris*.

El análisis de varianza de los resultados de la extracción Soxhlet con hexano indica que, existen diferencias significativas (para P=0.05) entre especies de microalgas. Los resultados también sugieren que existen diferencias significativas (para P=0.05) entre la temperatura de secado y el espesor de biomasa.

Figura 38. Gráficos de medias de la comparación de EOT de C. protothecoides después de los tratamientos de secado (extracción Soxhlet con hexano) comparado con la especie y temperatura de secado

Figura 39. Gráficos de medias de la comparación de EOT de C. protothecoides después de los tratamientos de secado (extracción Soxhlet con hexano) comparado con la especie y el espesor de la biomasa

Figura 40. Gráficos de medias de la comparación de EOT de C. protothecoides después de los tratamientos de secado (extracción Soxhlet con hexano) comparado con el espesor y temperatura de secado

Comparación del contenido de EOT en *C. vulgaris* y *C. protothecoides* cultivadas en raceway y fotobiorreactores

Adicionalmente a los datos obtenidos anteriormente, se realizó una comparación en el contenido de EOT después de los tratamientos de secado en las dos especies de microalgas que fueron cultivadas en raceway de 1600 L y otras que se cultivaron en fotobiorreactores de 100 L. Estos EOTs se obtuvieron mediante extracción Soxhlet con hexano en muestras secas de *C. vulgaris* y *C. protothecoides*.

La gráfica de la Fig. 29 muestra que el mayor contenido de EOT se obtuvo en los cultivos que se realizaron en raceway. Al comparar los contenidos de EOT podemos observar que en el cultivo de *C. protothecoides* en raceway se obtuvieron los más altos rendimientos para el tratamiento a 60°C y 1.5 mm de espesor de biomasa, siendo este tratamiento en el que las microalgas se encontraban menos tiempo expuestas a la temperatura, debido a su corta duración.

Al secar a 40°C y 2.5 mm de espesor se obtuvieron los menores rendimientos de lípidos en biomasa de *C. protothecoides* cultivada en fotobiorreactores.

Además se observa en la Fig.29, que en los cultivos que se realizaron en raceway, para todos los tratamientos de secado se obtuvieron altos contenidos de EOT en *C. protothecoides*, mientras que al realizar los cultivos en fotobiorreactores, los mayores contenidos de EOT se obtuvieron en *C. vulgaris* para todos los tratamientos.

Cultivo en raceway (1600 L) Chlorella vulgaris

- Cultivo en raceway (1600 L) Chlorella protothecoides Cultivo en fotobiorreactor (100 L) Chlorella vulgaris
- Cultivo en fotobiorreactor (100 L) Chlorella vulgans

Figura 41.Comparación de los miligramos del extracto orgánico total (EOT) obtenido de la extracción Soxhlet con hexano, de biomasa de microalgas de dos especies desecada bajo diferentes condiciones

Determinación de lípidos neutros mediante fluorescencia con rojo de Nilo

Para realizar el ensayo con rojo de Nilo, primero se probó el método en diluciones seriales de extractos lipídicos de *Phaeodactylum tricornutum*. En la figura 30 se muestra la curva estándar de aceite vegetal, utilizada para cuantificar los lípidos en los extractos. En la figura 31 se muestran los µg de lípidos en el extracto en función de fluorescencia reportada.

Figura 42.Curva estándar de lípidos neutros

Figura 43. μg de lípidos en el extracto en función de fluorescencia reportada para Phaeodactylum tricornutum

Se realizaron diluciones en serie de extractos de lípidos de *Phaeodactylum tricornutum* y se graficó la fluorescencia que dieron estos y el contenido de lípidos neutros en la muestra en función de las diluciones seriales realizadas (Fig. 32 y 32).

Figura 44. Fluorescencia de las diluciones en serie de los extractos de Phaeodactylum tricornutum

Figura 45. Contenido de lípidos neutros en las diluciones en serie de Phaeodactylum tricornutum

Eficiencia de solventes para la extracción de lípidos neutros

Después de comprobar el funcionamiento del método, se utilizaron tres mezclas de solventes (cloroformo/metanol [CHCl3], hexano/isopropanol [Hex] y 2-etoxietanol [2EE]) para la extracción de lípidos de *Nannochloropsis salina* y se realizó el ensayo de rojo de Nilo para probar la eficiencia de extracción de éstos, realizando una sola extracción (1) y doble extracción (2) para cada una de las mezclas. En la figura 34 se muestra la curva de aceite que se utilizó para determinar los lípidos en *Nannochloropsis salina*. En la figura 35 se observa la fluorescencia de los extractos con una y doble extracción.

Figura 46. Curva estándar de lípidos neutros

Figura 47. Fluorescencia de los extractos al realizar el ensayo con rojo de Nilo.

En la Figura 36 se observan los extractos obtenidos mediante los diferentes solventes. En la figura 37 se observa la cromatografía en capa fina realizada a los diferentes extractos. La figura 38 muestra los mg de lípidos extraídos con las diferentes mezclas de solventes al utilizar el método gravimétrico. En la figura 39 se observa el % de lípidos neutros de los extractos de *Nannochloropsis salina*.

Figura 48. Extractos de Nannochloropsis salina; 1. CHCl3/Metanol (extracción simple); 2. CHCl3/Metanol (extracción doble); 3. Hexano/Isopropanol (extracción simple); 4. Hexano/Isopropanol (extracción doble); 5. 2-etoxietanol (extracción simple); 6. 2-etoxietanol

Figura 49. Cromatografía en capa fina de los extractos obtenidos de Nannochloropsis salina. Como estándar se colocó aceite vegetal

Figura 50. Lípidos totales extraídos con las diferentes mezclas de solventes (método gravimétrico) en Nannochloropsis salina.

Figura 51. Lípidos neutros extraídos con las diferentes mezclas de solventes (método gravimétrico) en Nannochloropsis salina.

CAPÍTULO 5

CONCLUSIONES

En el crecimiento de microalgas se concluye que *C. protothecoides* presentó una mayor reproducción a las 21 días en comparación con *C. vulgaris*, además de que esta última presentó pérdida de pigmentos en la célula, lo cual disminuyó sus valores de absorbancia con el paso del tiempo.

En las cinéticas de secado se observó que la velocidad de secado para *C. protothecoides* fue mayor cuando se secó a 60°C y 1.5 mm, por lo cual el periodo de velocidad constante no fue evidente para estas condiciones. En el caso de *C. vulgaris*, las cinéticas de secado mostraron un comportamiento similar para los tratamientos a 60°C 2.5 mm y 40°C 1.5 mm debido a que los tiempos de secado fueron muy cercanos.

La comparación de los contenidos de agua en las muestras de *C. vulgaris* por el método de Karl Fischer muestran que, conforme se secaron las muestras los contenidos de agua disminuyeron. Sin embargo, existe muy poca variación entre los contenidos de agua durante la primera hora de secado, por lo cual los resultados de la pérdida de agua no son muy claros.

Al comparar todos los métodos de extracción con los tratamientos de secado se puede observar que los mayores contenidos de EOT se obtuvieron al realizar la extracción con metanol/hexano, seguido del método de extracción acelerada de disolventes. Mientras que los menores contenidos de EOT se obtuvieron con el método de extracción Soxhlet.

Mediante el análisis estadístico se pudo comprobar que, en ambas especies, el espesor del material durante el secado tiene significancia (para P=0.05) en el contenido de EOT, sin haber gran variación con relación a las temperaturas con que se secaron las muestras, obteniendo mayores rendimientos de EOT con un espesor de 1.5 mm mediante la extracción con el método Folch con metanol seguido de una extracción líquido-líquido con hexano. En todos los métodos hubo variación en el tratamiento con el cual se obtuvo mayor contenido de EOT, coincidiendo únicamente el método ASE con el método Folch modificado al obtener altos contenidos de EOT con el tratamiento a 60°C y 1.5 mm.

Dentro de las comparaciones de EOT durante los diferentes tratamientos de secado podemos concluir que, para *C. protothecoides*, el contenido de EOT disminuye conforme transcurre el tiempo de secado, siendo el tratamiento con mayor duración en el secado el que conserva la mayor cantidad de EOT. A diferencia de *C. protothecoides*, los contenidos de EOT en *C. vulgaris* fueron muy bajos. Esta especie no presenta relación entre el contenido de humedad y la pérdida del contenido lipídico. Sin embargo, si se observó una disminución en el contenido de EOT antes y después de los tratamientos de secado. Mediante el análisis estadístico se pudo comprobar que, para ambas especies, el espesor del material durante el secado tiene significancia (para P=0.05) en el contenido de EOT, sin haber gran variación con relación a las temperaturas con que se secaron las muestras.

En la comparación que se realizó de EOTs en muestras secas de Cv y Cp se concluye que *C. vulgaris* presentó mayor cantidad de EOT para todas las condiciones de secado cuando los extractos se obtuvieron mediante método Folch modificado seguido de una extracción líquido-líquido. El mayor contenido de EOT se obtuvo con el tratamiento a 40°C y 1.5 mm. Estadísticamente se concluyó que el espesor del material durante el secado tiene significancia (para P=0.05) en el contenido de EOT.

Por otro lado, al realizar extracciones por el método Soxhlet en las mismas muestras se encontró que *C. protothecoides* presentó mayor contenido de EOT a 60°C y 1.5 mm. Mediante análisis estadístico se concluye que no existe diferencia significativa (para P=0.05) en el contenido de EOT cuando se utilizaron diferentes espesores o temperaturas, pero si existe diferencia estadísticamente significativa (para P=0.05) entre especies de microalgas.

En la comparación de EOTs de acuerdo al método de cultivo podemos concluir que *C. protothecoides* crece con altos contenidos de EOT cuando es cultivada en raceway, siendo el tratamiento a 60°C y 1.5 mm el de mayores rendimientos. Mientras que *C. vulgaris* presentó mayor cantidad de EOT cuando es cultivada en fotobiorreactores, siendo el tratamiento a 40°C y 1.5 mm en el que se obtuvieron los mayores rendimientos de EOT.

Finalmente, de los resultados obtenidos en las extracciones de lípidos neutros podemos concluir que 2-etoxietanol es el solvente con el que se obtuvo mayor cantidad de lípidos totales gravimétricamente y mayor cantidad de lípidos neutros mediante fluorescencia con rojo de Nilo. Además se observó que el realizar una doble extracción de la misma muestra permite obtener una mayor cantidad de lípidos que cuando se realiza una única extracción.

74

RECOMENDACIONES

- Realizar una comparación entre el contenido de humedad por el método de Karl Fischer y el método de la estufa, debido a que en esta investigación sólo se realizó la comparación con el tiempo de secado.
- Realizar más tomas de muestra para poder determinar el contenido de agua por el método Karl Fischer después de los primeros 60 minutos de secado, pues en las gráficas no se observó gran variación entre la toma de muestras.

BIBLIOGRAFÍA

- Balasubramanian, Rajesh Kumar, Yen Doan, Thi Thai, & Obbard, Jeffrey Philip. (2013). Factors affecting cellular lipid extraction from marine microalgae. *Chemical Engineering Journal*, 215–216(0), 929-936. doi: http://dx.doi.org/10.1016/j.cej.2012.11.063
- Barsanti, Laura, & Gualtieri, Paolo. (2014). *Algae: anatomy, biochemistry, and biotechnology*: CRC press.
- Belarbi, El Hassan, Molina, Emilio, & Chisti, Yusuf. (2000). A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. *Enzyme* and Microbial Technology, 26(7), 516-529. doi: <u>http://dx.doi.org/10.1016/S0141-0229(99)00191-X</u>
- Bischoff, H. W., & Bold, H. C. (1963). Some algae from Enchanted Rock and related algal species. Phycological studies IV. University of Texas, Austin. University of Texas Publication 6318: 1-95.
- Bockisch, M. (1998). Fats and Oils Handbook: AOCS Press.
- Brown, G.H., & Sallee, E.M. (1967). Química cuantitativa: Reverté.
- Bruttel, Peter, & Schlink, Regina. (2003). Monograph. Water Determination by Karl Fischer Titration. <u>http://golik.co.il/Data/WaterdeterminationbyKarlFischerTitration_1426721477.pdf</u>
- Carandang, Rachelle, & Ziegler, Greg. (1998). Food: The Chemistry of Its Components, 3rd Edition (Coultate, T. P.). *Journal of Chemical Education*, 75(2), 152. doi: 10.1021/ed075p152
- Clark, S., Jung, S., & Lamsal, B. (2014). Food Processing: Principles and Applications: Wiley.
- Chen, C. X., Ma, X. Q., Li, X. C., & Qin, W. P. (2013). Study on drying characteristics of microalgae under different conditions. Paper presented at the 2nd International Conference on Energy and Environmental Protection, ICEEP 2013, Guilin; China. Book series retrieved from <u>http://www.scopus.com/inward/record.url?eid=2-s2.0-</u> <u>84884748996&partnerID=40&md5=9f7ee0000ea4f5eef8f2b4a51aee4c91</u>
- Cheng, Kuan-Chen, Ren, Ming, & Ogden, Kimberly L. (2013). Statistical optimization of culture media for growth and lipid production of *Chlorella protothecoides* UTEX 250. *Bioresource Technology*, *128*(0), 44-48. doi: <u>http://dx.doi.org/10.1016/j.biortech.2012.09.085</u>
- Choe, E., & Min, D. B. (2007). Chemistry of Deep-Fat Frying Oils. *Journal of Food Science*, 72(5), R77-R86. doi: 10.1111/j.1750-3841.2007.00352
- Dos Santos, R. R., Moreira, D. M., Kunigami, C. N., Aranda, D. A. G., & Teixeira, C. M. L. L. (2015). Comparison between several methods of total lipid extraction from *Chlorella vulgaris* biomass. *Ultrasonics sonochemistry*,22, 95-99.
- Demirbas, A, & Demirbas, MF. (2011). Importance of algae oil as a source of biodiesel. *Energy Conv. Manag.*, *52*, 163 - 170.
- Desmorieux, H., Madiouli, J., Herraud, C., & Mouaziz, H. (2010). Effects of size and form of Arthrospira Spirulina biomass on the shrinkage and porosity during drying. *Journal of Food Engineering*, *100*(4), 585-595. doi: <u>http://dx.doi.org/10.1016/j.jfoodeng.2010.03.021</u>

- Desmorieux, Hélène, & Decaen, Nadège. (2005). Convective drying of spirulina in thin layer. *Journal* of Food Engineering, 66(4), 497-503. doi: <u>http://dx.doi.org/10.1016/j.jfoodeng.2004.04.021</u>
- Desmorieux, Hélène, & Hernandez, Fabiola. (2004). *Biochemical and physical criteria of Spirulina after different drying processes.* Paper presented at the Proceedings of the 14th International Drying Symposium (IDS), B.
- Figiel, Adam, Szumny, Antoni, Gutiérrez-Ortíz, Antonio, & Carbonell-Barrachina, Ángel A. (2010). Composition of oregano essential oil (Origanum vulgare) as affected by drying method. *Journal of Food Engineering, 98*(2), 240-247. doi: <u>http://dx.doi.org/10.1016/j.jfoodeng.2010.01.002</u>
- Gallagher, Brian J. (2011). The economics of producing biodiesel from algae. *Renewable Energy*, 36(1), 158-162. doi: <u>http://dx.doi.org/10.1016/j.renene.2010.06.016</u>
- Garibay-Hernández, A, Vázquez-Duhalt, Rafael, Sanchez-Saavedra, Maria, Serrano-Carreón, L, & Martínez-Jiménez, A. (2009). Biodiesel a partir de microalgas. *BioTecnología*, *13*(3), 38-61.
- Goncalves, AL, Pires, JCM, & Simoes, M. (2013). Biodiesel from microalgal oil extraction. Environmental Chemistry for a Sustainable World, 3.
- González, Angel, Kafarov, Viatcheslav, & Monsalve, A. (2009). Desarrollo de métodos de extracción de aceite en la cadena de producción de biodiesel a partir de microalgas. *Prospectiva*, 7, 53-60.
- Griffiths, Melinda J, Garcin, Clive, van Hille, Robert P, & Harrison, Susan TL. (2011). Interference by pigment in the estimation of microalgal biomass concentration by optical density. *Journal of microbiological methods*, *85*(2), 119-123.
- Griffiths, MelindaJ, Hille, RobertP, & Harrison, SusanT L. (2012). Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. *Journal of Applied Phycology*, 24(5), 989-1001. doi: 10.1007/s10811-011-9723-y
- Guldhe, Abhishek, Singh, Bhaskar, Rawat, Ismail, Ramluckan, Krishan, & Bux, Faizal. (2014). Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. *Fuel*, *128*(0), 46-52. doi: <u>http://dx.doi.org/10.1016/j.fuel.2014.02.059</u>
- Halim, Ronald, Danquah, Michael K., & Webley, Paul A. (2012). Extraction of oil from microalgae for biodiesel production: A review. *Biotechnology Advances*, 30(3), 709-732. doi: http://dx.doi.org/10.1016/j.biotechadv.2012.01.001
- Halim, Ronald, Gladman, Brendan, Danquah, Michael K., & Webley, Paul A. (2011). Oil extraction from microalgae for biodiesel production. *Bioresource Technology*, *102*(1), 178-185. doi: <u>http://dx.doi.org/10.1016/j.biortech.2010.06.136</u>
- Hussain, Javid, Liu, Yan, Lopes, WilsonA, Druzian, Janicel, Souza, CarolinaO, Carvalho, GilsonC, . . .
 Liao, Wei. (2015). Effects of Different Biomass Drying and Lipid Extraction Methods on Algal
 Lipid Yield, Fatty Acid Profile, and Biodiesel Quality. *Applied Biochemistry and Biotechnology*, 175(6), 3048-3057. doi: 10.1007/s12010-015-1486-5
- Isengard, H. D. (1995). Rapid water determination in foodstuffs. *Trends in Food Science & Technology, 6*(5), 155-162. doi: <u>http://dx.doi.org/10.1016/S0924-2244(00)89024-X</u>

- Isengard, Heinz-Dieter. (2001). Water content, one of the most important properties of food. *Food Control,* 12(7), 395-400. doi: <u>http://dx.doi.org/10.1016/S0956-7135(01)00043-3</u>
- Jacob Lopes, Eduardo, Zepka, Leila Queiroz, Pinto, Luiz Antônio A., & Queiroz, Maria Isabel. (2007). Characteristics of thin-layer drying of the cyanobacterium Aphanothece microscopica Nägeli. *Chemical Engineering and Processing: Process Intensification, 46*(1), 63-69. doi: http://dx.doi.org/10.1016/j.cep.2006.04.004
- Keris-Sen, Ulker D., Sen, Unal, Soydemir, Gulfem, & Gurol, Mirat D. (2014). An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. *Bioresource Technology*, 152(0), 407-413. doi: <u>http://dx.doi.org/10.1016/j.biortech.2013.11.018</u>
- Lee, J-Y, Yoo, C, Jun, S-Y, Ahn, C-Y, & Oh, H-M. (2010). Comparison of several methods for effective lipid extraction from microalgae. *Bioresour Technol, 101*, s75 s77.
- Lee, Robert Edward. (2008). *Phycology*: Cambridge University Press.
- Li, Yan, Ghasemi Naghdi, Forough, Garg, Sourabh, Adarme-Vega, Tania, Thurecht, Kristofer, Ghafor, Wael, . . . Schenk, Peer. (2014). A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. *Microbial Cell Factories, 13*(1), 14.
- Loera-Quezada, M, & Olguín, Eugenia J. (2010). Las microalgas oleaginosas como fuente de biodiesel: retos y oportunidades. *Rev. Latinoam. Biotecnol. Amb. Algal, 1*(1), 91-116.
- Luo, Jia, Fang, Zhen, & Smith Jr, Richard L. (2014). Ultrasound-enhanced conversion of biomass to biofuels. *Progress in Energy and Combustion Science*, *41*(0), 56-93. doi: <u>http://dx.doi.org/10.1016/j.pecs.2013.11.001</u>
- Mathlouthi, Mohamed. (2001). Water content, water activity, water structure and the stability of foodstuffs. *Food Control, 12*(7), 409-417. doi: <u>http://dx.doi.org/10.1016/S0956-7135(01)00032-9</u>
- Miao, Xiaoling, & Wu, Qingyu. (2004). High yield bio-oil production from fast pyrolysis by metabolic controlling of *Chlorella protothecoides*. *Journal of Biotechnology*, *110*(1), 85-93. doi: <u>http://dx.doi.org/10.1016/j.jbiotec.2004.01.013</u>
- Molina Grima, E., Belarbi, E. H., Acién Fernández, F. G., Robles Medina, A., & Chisti, Yusuf. (2003). Recovery of microalgal biomass and metabolites: process options and economics. *Biotechnology Advances, 20*(7–8), 491-515. doi: <u>http://dx.doi.org/10.1016/S0734-9750(02)00050-2</u>
- Neto, Ana Maria Pereira, Sotana de Souza, Rafael Augusto, Leon-Nino, Amanda Denisse, da Costa, Joana D'arc Aparecida, Tiburcio, Rodolfo Sbrolini, Nunes, Thaís Abreu, . . . Gianesella, Sônia Maria Flores. (2013). Improvement in microalgae lipid extraction using a sonication-assisted method. *Renewable Energy*, 55(0), 525-531. doi: http://dx.doi.org/10.1016/j.renene.2013.01.019
- Oliveira, E. G., Rosa, G. S., Moraes, M. A., & Pinto, L. A. A. (2009). Characterization of thin layer drying of Spirulina platensis utilizing perpendicular air flow. *Bioresource Technology*, *100*(3), 1297-1303. doi: <u>http://dx.doi.org/10.1016/j.biortech.2008.05.052</u>

- Oliveira, Elizangela G., Duarte, Jessica H., Moraes, Kelly, Crexi, Valeria T., & A. Pinto, Luiz A. (2010). Optimisation of Spirulina platensis convective drying: evaluation of phycocyanin loss and lipid oxidation. *International journal of food science & technology*, *45*(8), 1572-1578.
- Olmstead, Ian L. D., Kentish, Sandra E., Scales, Peter J., & Martin, Gregory J. O. (2013). Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass. *Bioresource Technology*, 148(0), 615-619. doi: http://dx.doi.org/10.1016/j.biortech.2013.09.022
- Omidbaigi, R., Sefidkon, F., & Kazemi, F. (2004). Influence of drying methods on the essential oil content and composition of Roman chamomile. *Flavour and Fragrance Journal, 19*(3), 196-198. doi: 10.1002/ffj.1340
- Richmond, A., & Hu, Q. (2013). Handbook of Microalgal Culture: Applied Phycology and Biotechnology: Wiley.
- Rückold, Stephan, Heinz Grobecker, Karl, & Isengard, Heinz-Dieter. (2001). The effects of drying on biological matrices and the consequences for reference materials. *Food Control, 12*(7), 401-407. doi: <u>http://dx.doi.org/10.1016/S0956-7135(01)00033-0</u>
- SAS, Radiometer Analytical. (2007). Karl Fischer Volumetric Tritation Theory and Practice. In R. a. A. H. C. Brand (Ed.). France.
- Sharma, V. K., Singh, G. P., & Sharma, R. (2011). Comparison of Different Media Formulations on Growth, Morphology and Chlorophyll Content of Green Alga, *Chlorella vulgaris*. *International Journal of Pharma and Bio Sciences*, 2, B509-B516.
- Shelef, G, Sukenik, A, & Green, M. (1984). Microalgae harvesting and processing: a literature review: Technion Research and Development Foundation Ltd., Haifa (Israel).
- Show, Kuan-Yeow, Lee, Duu-Jong, & Chang, Jo-Shu. (2013). Algal biomass dehydration. *Bioresource Technology*, *135*(0), 720-729. doi: <u>http://dx.doi.org/10.1016/j.biortech.2012.08.021</u>
- Silva, Vilma Mota da, Silva, Luciana Almeida, Andrade, Jailson B de, Veloso, Márcia C, & Santos, Gislaine Vieira. (2008). Determination of moisture content and water activity in algae and fish by thermoanalytical techniques. *Quimica Nova*, *31*(4), 901-905.
- Strumillo, C., & Kudra, Tadeusz. (1986). *Drying: Principles, Applications, and Design*: Gordon and Breach Science Publishers.
- Szumny, Antoni, Figiel, Adam, Gutiérrez-Ortíz, Antonio, & Carbonell-Barrachina, Ángel A. (2010). Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. *Journal of Food Engineering, 97*(2), 253-260. doi: <u>http://dx.doi.org/10.1016/j.jfoodeng.2009.10.019</u>
- Taher, Hanifa, Al-Zuhair, Sulaiman, Al-Marzouqi, Ali H., Haik, Yousef, & Farid, Mohammed. (2014). Effective extraction of microalgae lipids from wet biomass for biodiesel production. *Biomass* and Bioenergy. doi: <u>http://dx.doi.org/10.1016/j.biombioe.2014.02.034</u>
- Widjaja, Arief, Chien, Chao-Chang, & Ju, Yi-Hsu. (2009). Study of increasing lipid production from fresh water microalgae *Chlorella vulgaris*. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 13-20. doi: <u>http://dx.doi.org/10.1016/j.jtice.2008.07.007</u>

- Xu, Han, Miao, Xiaoling, & Wu, Qingyu. (2006). High quality biodiesel production from a microalga *Chlorella protothecoides* by heterotrophic growth in fermenters. *Journal of Biotechnology*, *126*(4), 499-507.
- Zhu, C. J., & Lee, Y. K. (1997). Determination of biomass dry weight of marine microalgae. *Journal of Applied Phycology*, 9(2), 189-194. doi: 10.1023/a:1007914806640
- Zhu, M., Zhou, P. P., & Yu, L. J. (2002). Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids. *Bioresource Technology*, 84(1), 93-95. doi: http://dx.doi.org/10.1016/S0960-8524(02)00028-7

ANEXOS

Anexo A. Datos de las cinéticas de secado de Chlorella vulgaris

Muestra CV1-S1				
Temperatura de secado	40°C	Velocidad de aire	1 m/s	
Espesor	2.5 mm	Tiempo de secado	190 min	
Peso inicial de la muestra	318 g	Peso seco de la muestra	13.35 g	

t	MH	%H₂O	CFA	R	R promedio
[min]	[g]	[BH]	[g agua/g sólido seco]	[g agua/cm ² min]	K promedio
0	318	95.8	22.8095238	0.00153703	0.00184444
5	306	95.6352941	21.9110512	0.00192129	0.00188286
10	294	95.4571429	21.0125786	0.00192129	0.00188286
15	281.5	95.2554174	20.0766697	0.00192129	0.00188286
20	269.5	95.0441558	19.1781971	0.00192129	0.00188286
25	257	94.8031128	18.2422881	0.00192129	0.00184444
30	245	94.5485714	17.3438155	0.00192129	0.00188286
35	233	94.2678112	16.4453429	0.00230554	0.00192129
40	220.5	93.9428571	15.509434	0.00192129	0.00192129
45	208	93.5788462	14.573525	0.00153703	0.00188286
50	195.5	93.1682864	13.6376161	0.00192129	0.00180601
55	183.5	92.7215259	12.7391435	0.00153703	0.00176758
60	172	92.2348837	11.8781072	0.00192129	0.00172916
65	160.5	91.6785047	11.017071	0.00192129	0.00169073
70	149.5	91.0662207	10.1934711	0.00192129	0.00169073
75	138.5	90.3566787	9.36987122	0.00192129	0.00161388
80	127.5	89.5247059	8.54627134	0.00153703	0.00157545
85	117.5	88.6331915	7.79754417	0.00153703	0.0014986
90	107	87.517757	7.01138065	0.00115277	0.00138333
95	98	86.3714286	6.33752621	0.00115277	0.00138333
100	89	84.9932584	5.66367176	0.00153703	0.00130647
105	80	83.305	4.98981731	0.00115277	0.0011912
110	72	81.45	4.39083558	0.00115277	0.00115277
115	64.5	79.2930233	3.82929021	0.00153703	0.00107592
120	57	76.5684211	3.26774483	0.00115277	0.00096064
125	50.5	73.5524752	2.78107218	0.00076851	0.00084537
130	44.5	69.9865169	2.33183588	0.00076851	0.00076851
135	39.5	66.1873418	1.9574723	0.00115277	0.00069166
140	34.5	61.2869565	1.58310872	0.00076851	0.00057639

145	30.5	56.2098361	1.28361785	0.00038426	0.00049953
150	27	50.5333333	1.02156334	0.00076851	0.00038426
155	24	44.35	0.79694519	0	0.00026898
160	22	39.2909091	0.64719976	0.00038426	0.00011528
165	20.5	34.8487805	0.53489069	0.00038426	0.00011528
170	20.5	34.8487805	0.53489069	0	0.00019213
175	19	29.7052632	0.42258161	0	0.00019213
180	18	25.8	0.34770889	0	0.0001537
185	16.5	19.0545455	0.23539982	0	6.226E-05
190	16	16.525	0.19796346	-1.0694E-05	-1.0694E-05

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
0	40.163	40.07	25.626	22.832	1.228
2	40.195	39.167	26.529	25.69	0.918
4	40.288	39.541	27.121	27.008	1.091
6	40.132	39.167	27.307	27.79	1.029
8	40.132	39.416	27.588	27.082	1.116
10	40.319	39.447	27.619	27.497	0.868
12	40.257	39.79	27.65	26.862	1.054
14	40.07	39.323	27.619	27.106	1.005
16	40.226	39.447	27.619	26.838	0.831
18	40.163	39.23	27.556	26.862	0.98
20	40.132	39.323	27.494	27.155	1.042
22	40.132	39.323	27.463	27.277	0.843
24	40.226	39.23	27.463	27.521	1.067
26	40.195	39.354	27.463	28.229	0.806
28	40.132	39.323	27.588	28.351	0.806
30	40.226	39.541	27.712	27.521	1.166
32	40.226	39.759	27.681	27.741	1.228
34	40.132	39.479	27.712	26.838	1.029
36	40.132	39.416	27.556	26.764	1.029
38	40.132	39.541	27.65	26.862	1.29
40	40.226	39.479	27.494	26.813	1.005
42	40.132	39.261	27.463	26.862	1.042
44	40.07	39.354	27.494	27.179	0.868
46	40.101	39.354	27.588	27.253	1.116
48	40.101	39.603	27.463	25.226	1.166
50	40.226	39.696	27.556	27.057	1.079
52	40.101	39.416	27.588	26.764	1.265
54	40.163	39.634	27.588	26.789	1.116

56	40.412	39.883	27.837	27.375	1.389
58	40.132	39.603	27.868	26.935	1.129
60	40.101	39.572	27.961	26.642	1.104
62	40.101	39.479	27.868	26.349	1.178
64	40.132	39.696	27.899	26.325	1.215
66	40.07	39.665	27.899	26.74	1.067
68	40.132	39.759	27.961	26.154	1.228
70	40.195	39.665	27.899	25.617	1.203
72	40.288	39.572	27.899	26.154	0.967
74	40.132	39.634	27.899	26.3	0.918
76	40.163	39.821	28.054	25.934	1.166
78	40.132	39.759	28.148	26.007	1.091
80	40.039	39.665	28.366	25.495	1.364
82	40.195	39.696	28.397	25.129	1.005
84	40.381	40.07	28.615	24.663	1.054
86	40.288	40.07	28.739	25.299	0.881
88	40.195	39.603	29.206	25.275	0.881
90	40.07	39.634	29.829	24.419	1.253
92	40.101	39.634	30.389	24.297	1.104
94	40.163	40.008	31.167	23.784	1.005
96	40.101	39.634	31.883	23.955	1.389
98	40.195	39.852	33.16	23.906	1.153
100	40.07	39.447	33.813	24.028	1.079
102	40.226	39.79	35.37	23.711	0.967
104	40.257	39.759	35.992	23.857	1.389
106	40.07	39.603	36.086	23.784	1.067
108	40.101	39.603	36.335	23.101	1.426
110	40.226	39.883	36.77	23.54	1.302
112	40.101	39.634	36.584	23.516	1.141
114	40.132	39.79	37.019	23.809	1.228
116	40.07	39.634	37.113	23.442	1.203
118	40.132	39.696	37.486	22.808	1.067
120	40.132	39.634	37.331	23.125	1.339
122	40.132	39.603	37.424	22.734	1.315
124	40.132	39.79	37.829	23.198	1.141
126	40.101	39.634	37.704	22.734	0.843
128	40.163	39.914	38.109	22.271	1.116
130	40.132	39.665	38.047	22.783	1.141
132	40.163	39.914	38.265	22.393	0.967
134	40.163	39.759	38.202	21.636	1.377
136	40.288	39.852	38.389	22.197	1.352
138	40.132	39.665	38.265	21.587	1.265

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
140	40.039	39.696	38.296	22.026	1.339
142	40.163	39.821	38.638	21.831	1.153
144	40.195	39.821	38.638	21.416	0.992
146	40.226	39.977	38.794	21.001	1.215
148	40.195	40.008	38.918	20.684	1.067
150	40.163	40.07	39.012	20.928	1.228
152	40.132	40.132	39.074	20.562	1.054
154	40.132	39.696	39.883	19.878	0.819
156	40.195	39.852	40.039	20.146	0.608
158	40.132	39.696	39.914	19.902	1.129
160	40.226	39.665	39.852	19.243	0.633
162	40.101	39.634	39.821	19.707	0.905
164	40.319	39.821	40.039	19.854	0.719
166	40.132	39.665	39.79	19.219	0.806
168	40.257	39.883	40.008	19.341	0.93
170	40.101	39.759	39.883	18.975	0.893
172	40.101	39.79	39.852	18.853	1.067
174	40.163	39.852	40.07	18.436	1.178
176	40.195	39.79	39.977	19.023	0.843
178	40.101	39.977	40.07	18.582	1.178
180	40.163	40.07	40.132	18.631	1.153
182	40.381	40.412	40.475	17.533	0.893
184	40.195	40.226	40.288	16.58	0.781
186	40.101	40.07	40.195	16.898	0.645
188	40.132	40.008	40.101	16.385	0.893
190	40.412	40.288	40.381	16.678	0.98

Muestra CV1-S2				
Temperatura de secado	40°C	Velocidad de aire	1 m/s	
Espesor	1.5 mm	Tiempo de secado	149 min	
Peso inicial de la muestra	195.5 g	Peso seco de la muestra	8.21 g	

t [min]	MH	%H₂O	CFA	R [= = = = = (== 2 = = i= 1	R promedio
[min]		[BH]	[g agua/g solido seco]	[g agua/cm² min]	
0	195.5	95.8	22.8095238	0.00115277	0.00165231
5	184.5	95.5495935	21.4698575	0.00192129	0.00176758
10	174	95.2810345	20.1910851	0.00192129	0.00195971
15	161.5	94.9157895	18.6687371	0.00230554	0.00199814
20	148.5	94.4707071	17.0854951	0.00230554	0.00199814
25	135.5	93.9402214	15.5022531	0.00192129	0.00192129
30	122.5	93.2971429	13.9190111	0.00192129	0.00180601
35	110.5	92.5692308	12.4575569	0.00192129	0.00192129
40	99	91.7060606	11.0569967	0.00345832	0.00180601
45	85.5	90.3964912	9.4128608	0.00153703	0.00153703
50	75.5	89.1245033	8.19498234	0.00153703	0.00161388
55	65.5	87.4641221	6.97710389	0.0026898	0.00146018
60	54.5	84.933945	5.63743758	0.00115277	0.0011912
65	46.5	82.3419355	4.66313482	0.00153703	0.00115277
70	39	78.9461538	3.74972598	0.00115277	0.00092222
75	31.5	73.9333333	2.83631714	0.00076851	0.00061481
80	27	69.5888889	2.28827183	0.00076851	0.00053796
85	23.5	65.0595745	1.86201437	0.00076851	0.00069166
90	20	58.945	1.43575691	0.00038426	0.00049953
95	14.5	43.3724138	0.76592376	0	0.0001537
100	13.5	39.1777778	0.64413592	0	0.00011528
105	12.5	34.312	0.52234807	0	0.00011528
110	12	31.575	0.46145415	0	7.6851E-05
115	11	25.3545455	0.3396663	0	3.8426E-05
120	11	25.3545455	0.3396663	0.00038426	3.8426E-05
125	10.5	21.8	0.27877238	0	0
130	10.5	21.8	0.27877238	0	0
135	10.5	21.8	0.27877238	0	0
140	10.5	21.8	0.27877238	0	0
145	10.5	21.8	0.27877238	0	0
146	10.5	21.8	0.27877238	0	0
147	10.5	21.8	0.27877238	0	0
148	10.5	21.8	0.27877238	0	0
149	10.5	21.8	0.27877238	0	0

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
0	40.132	40.381	31.665	20.244	0.236
2	40.132	27.152	32.288	20.806	1.215
4	40.226	28.335	31.852	20.928	1.228
6	40.07	28.21	31.541	20.977	0
8	40.132	28.366	31.821	21.855	0.36
10	40.163	28.335	31.977	21.587	0
12	40.008	28.335	31.696	21.514	0.769
14	40.132	28.272	31.946	21.05	0.347
16	40.163	28.241	31.759	21.099	1.339
18	40.132	28.241	31.977	21.294	1.401
20	40.132	28.241	31.914	21.831	0.298
22	40.132	28.366	31.728	21.831	0
24	40.07	28.272	32.132	21.953	0.819
26	40.195	28.366	32.039	22.295	1.352
28	40.101	28.428	31.977	22.515	1.129
30	40.07	28.459	32.288	22.808	1.042
32	40.226	28.584	32.288	22.856	1.377
34	40.008	28.397	31.946	22.661	1.873
36	40.195	28.428	32.101	22.295	1.997
38	40.132	28.366	32.288	21.88	0.93
40	40.132	28.241	31.883	21.367	0
42	40.008	28.241	31.883	21.66	1.042
44	40.132	28.397	31.759	21.538	2.294
46	40.07	28.335	32.132	21.245	0.05
48	40.226	28.708	32.07	21.636	2.778
50	40.07	29.051	32.195	21.367	1.364
52	40.319	29.891	32.319	21.66	1.017
54	40.101	30.42	32.07	21.563	2.803
56	40.195	31.136	31.946	20.83	2.679
58	40.132	31.759	32.288	20.903	1.091
60	40.163	32.568	32.35	20.806	2.543
62	40.039	33.222	32.226	20.488	1.215
64	40.226	34.062	32.226	20.342	0
66	40.132	34.623	31.946	20.146	1.501
68	40.257	35.245	32.101	19.805	0
70	40.226	35.837	32.35	20.049	1.377
72	40.132	36.179	32.444	20.244	0.285
74	40.101	36.584	32.132	19.927	1.265
76	40.008	36.988	32.257	19.634	0
78	40.132	37.393	32.257	19.927	2.902
80	40.07	37.767	32.226	19.707	0.26

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material I°Cl	% de Humedad	Flujo de aire [m/s]
82	40.288	38.202	32.07	19.609	0
84	40.07	38.451	32.475	19.561	0
86	40.257	39.043	32.257	19.78	0.98
88	40.039	39.447	32.319	21.074	0.992
90	40.163	39.914	32.319	21.758	0.509
92	40.35	40.101	32.257	21.636	0.98
94	40.257	40.039	31.914	22.075	1.265
96	40.039	39.883	31.977	22.051	2.84
98	40.07	39.852	32.039	22.441	0.583
100	40.07	39.883	32.506	22.637	1.104
102	40.444	40.257	32.039	22.979	0.571
104	40.195	40.07	32.132	22.832	0
106	40.07	39.883	32.226	23.198	1.265
108	40.101	39.977	32.195	23.394	1.054
110	40.101	39.977	32.039	23.027	1.091
112	40.101	40.008	32.195	22.588	1.24
114	40.101	40.008	32.039	22.637	0
116	40.288	40.257	32.07	22.051	0.918
118	40.257	40.226	32.412	22.051	0.248
120	40.039	39.977	32.195	22.026	0.843
122	40.039	40.039	32.35	22.075	0.992
124	40.226	40.195	32.07	21.953	0
126	40.132	40.039	31.977	21.611	0.161
128	40.07	40.039	32.319	21.172	0.558
130	40.226	40.226	32.412	21.27	0.62
132	40.101	40.039	32.35	21.147	1.153
134	40.163	40.132	32.101	20.952	2.89
136	40.163	40.101	32.257	20.61	1.091
138	40.039	40.008	32.537	20.952	1.017
140	40.319	40.226	32.226	21.074	0.149
142	40.132	40.039	32.288	20.855	1.228
144	40.195	40.101	32.568	20.488	0
146	40.257	40.195	32.537	20.391	0
148	40.039	40.008	32.63	20.391	1.153
150	40.101	40.039	32.506	19.976	0.967

Muestra CV1-S3				
Temperatura de secado	60°C	Velocidad de aire	1 m/s	
Espesor	1.5 mm	Tiempo de secado	77 min	
Peso inicial de la muestra	188.5 g	Peso seco de la muestra	7.91 g	

t [min]	MH [g]	%H₂O [BH]	CFA [g agua/g sólido seco]	R [g agua/cm² min]	R promedio
0	188.5	95.8	22.8095238	0.00384257	0.0037273
5	164.5	95.187234	19.7780725	0.00345832	0.00368887
10	140	94.345	16.683466	0.00345832	0.00357359
15	116.5	93.2042918	13.7151699	0.00345832	0.00341989
20	93.5	91.5326203	10.8100291	0.00345832	0.00318934
25	72	89.0041667	8.09435392	0.00345832	0.0028435
30	52	84.775	5.5681445	0.0026898	0.00226712
35	35	77.38	3.42086649	0.00192129	0.0014986
40	22.5	64.8133333	1.8419856	0.00153703	0.00076851
45	15.5	48.9225806	0.9578123	0.00076851	0.00034583
50	12.5	36.664	0.57888089	0.00038426	0.0001537
55	11	28.0272727	0.38941518	0.00076851	7.6851E-05
60	10.5	24.6	0.32625995	0.00038426	0
65	10	20.83	0.26310471	0	-3.8426E-05
70	10.5	24.6	0.32625995	0.00038426	4.5433E-05
75	10.5	24.6	0.32625995	0.00038426	0.00012116
76	10	20.83	0.26310471	0	-1.0395E-05
77	10	20.83	0.26310471	-2.079E-05	-2.079E-05

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
0	60.148	60.086	30.669	6.252	1.091
2	60.335	59.899	34.031	9.499	1.091
4	59.837	59.619	34.685	10.207	0.881
6	60.241	60.086	34.965	10.304	1.265
8	60.054	59.774	34.934	10.964	1.091
10	60.117	59.432	35.183	10.89	1.191
12	60.148	59.712	35.183	10.695	1.253
14	59.961	59.463	35.089	10.329	0.806
16	60.054	59.619	35.307	10.719	1.24
18	59.899	59.401	35.37	9.889	1.203
20	60.117	59.774	35.525	9.963	0.831

Tiomno	Temperatura del	Temperatura de la	Temperatura del	% do	Flujo de
[min]	túnel	superficie del material	interior del material	o ue Humedad	aire
[]	[°C]	[°C]	[°C]	Humedad	[m/s]
22	59.992	59.93	35.494	9.938	1.153
24	60.148	59.899	35.93	9.23	1.153
26	60.054	59.899	38.202	9.059	1.215
28	60.086	59.712	44.428	8.864	1.017
30	59.899	59.619	50.218	8.693	0.881
32	60.148	59.961	52.086	8.669	0.806
34	59.961	59.681	52.988	8.449	1.017
36	60.272	60.086	53.829	7.692	0.831
38	60.086	59.961	54.514	7.912	1.091
40	60.179	59.681	55.074	7.155	0.992
42	60.023	59.619	55.51	6.618	0.757
44	60.117	59.899	56.039	6.349	1.302
46	60.864	60.49	57.004	5.518	1.302
48	60.397	61.051	57.564	5.469	0.955
50	60.366	60.023	58.031	5.298	1.129
52	60.77	60.49	58.965	4.981	1.65
54	60.148	60.023	59.183	5.396	1.414
56	60.054	60.117	59.899	4.932	1.612
58	60.023	59.899	59.992	4.273	1.922
60	60.397	60.428	60.335	4.639	1.463
62	60.335	60.086	60.241	4.273	1.662
64	60.054	60.054	60.054	4.761	1.662
66	59.93	59.805	59.681	4.858	1.501
68	60.148	59.805	59.712	4.321	1.687
70	60.086	59.961	59.899	4.175	1.687
72	60.21	59.992	59.868	4.858	1.538
74	60.272	60.054	59.868	4.712	1.526
76	60.148	59.899	59.712	4.492	1.65
78	60.21	60.054	59.992	4.541	1.935

Muestra CV1-S4					
Temperatura de secado60°CVelocidad de aire1 m/s					
Espesor	2.5 mm	Tiempo de secado	147 min		
Peso inicial de la muestra	330 g	Peso seco de la muestra	13.86 g		

t [min]	MH [g]	%H₂O [BH]	CFA [g agua/g sólido seco]	R [g agua/cm ² min]	R promedio
0	330	95.8	22.8095238	0.00230554	0.00195971
5	318	95.6415094	21.9437229	0.00192129	0.00207499
10	304.5	95.4482759	20.969697	0.00230554	0.00219027
15	291	95.2371134	19.995671	0.0026898	0.00230554
20	276	94.9782609	18.9134199	0.00153703	0.00249767
25	261	94.6896552	17.8311688	0.0026898	0.0026898
30	243.5	94.3080082	16.5685426	0.00230554	0.00307406
35	226	93.8672566	15.3059163	0.00307406	0.00349674
40	203.5	93.1891892	13.6825397	0.00345832	0.00365044
45	180.5	92.3213296	12.023088	0.00461109	0.00330461
50	156	91.1153846	10.2554113	0.00384257	0.00257452
55	137.5	89.92	8.92063492	0.00230554	0.00203656
60	122.5	88.6857143	7.83838384	0.00192129	0.0014986
65	111	87.5135135	7.00865801	0.00153703	0.00107592
70	103	86.5436893	6.43145743	0.00076851	0.00065324
75	97	85.7113402	5.998557	0	0.00038426
80	94.5	85.3333333	5.81818182	0.00153703	0.00034583
85	92	84.9347826	5.63780664	0.00038426	0.00019213
90	90	84.6	5.49350649	-0.00038426	0.0041884
95	89.5	84.5139665	5.45743146	0.00076851	0.00457266
100	35.5	60.9577465	1.56132756	0.00038426	0.00061481
105	30	53.8	1.16450216	0.00038426	0.00038426
110	27.5	49.6	0.98412698	0.00038426	0.00023055
115	25	44.56	0.8037518	0	0.00011528
120	24.5	43.4285714	0.76767677	0	0.00061481
125	23.5	41.0212766	0.6955267	0	0.00053796
130	16.5	16	0.19047619	0	3.8426E-05
135	16.5	16	0.19047619	0	7.6851E-05
140	16	13.375	0.15440115	0	0.00014368
145	15.5	10.5806452	0.11832612	0.00038426	0.00025506
146	15	7.6	0.08225108	0.00038426	0.00019046
147	14.5	4.4137931	0.04617605	-3.3459E-06	-3.3459E-06

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la Temperatura del superficie del material [°C] [°C]		% de Humedad	Flujo de aire [m/s]
0	60.086	60.086	33.844	7.204	1.377
2	59.961	59.899	36.117	10.06	1.215
4	60.148	59.899	36.739	10.597	1.327
6	60.054	59.899	36.864	10.89	0.955
8	60.086	59.588	36.802	10.964	1.067
10	60.148	60.49	36.739	10.964	0.98
12	60.148	60.21	36.77	10.719	1.364
14	60.086	60.086	36.864	10.719	1.352
16	60.553	60.553	36.708	10.744	1.091
18	60.148	59.774	36.584	10.475	0.893
20	60.179	60.272	36.553	10.475	0.881
22	60.117	59.712	36.521	10.719	1.426
24	60.086	59.961	36.553	10.646	1.091
26	59.961	59.93	36.49	10.646	1.178
28	60.304	60.428	36.584	10.866	1.302
30	60.241	60.086	36.677	10.378	0.955
32	60.117	59.93	36.739	10.475	1.463
34	59.93	59.494	37.144	10.378	1.339
36	60.241	60.553	38.109	10.304	1.079
38	60.023	59.992	39.167	10.426	1.091
40	60.179	59.992	40.195	9.841	1.153
42	59.961	59.743	41.315	9.67	1.054
44	60.117	60.179	42.623	10.207	1.091
46	59.961	59.619	43.743	9.987	1.178
48	59.992	59.712	44.926	9.133	0.943
50	60.054	59.743	46.078	9.401	1.439
52	59.93	59.774	47.043	8.376	1.129
54	60.148	60.023	48.195	8.254	1.191
56	60.241	60.21	49.128	7.961	1.414
58	60.054	60.335	49.782	7.961	1.215
60	60.272	60.304	50.778	7.546	1.116
62	60.117	59.774	51.525	7.253	1.302
64	60.148	59.681	52.335	6.911	1.215
66	60.241	59.992	53.144	7.277	1.253
68	60.148	59.868	53.922	6.715	0.98
70	60.054	59.899	54.514	6.226	1.005
72	60.148	59.992	55.167	6.545	1.29
74	60.023	59.743	55.821	5.762	1.24
76	60.148	60.335	56.506	5.689	0.992
78	59.992	59.712	56.879	5.908	1.166
80	60.023	60.023	57.409	5.249	1.265

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
82	60.304	60.428	58.031	5.249	1.327
84	60.148	59.93	58.56	5.2	0.955
86	60.117	60.21	59.058	5.103	1.315
88	60.117	60.054	59.588	4.907	1.228
90	60.148	60.086	59.992	5.029	1.463
92	60.148	60.272	60.179	5.054	1.451
94	60.272	60.117	60.335	4.712	1.352
96	60.21	60.739	60.241	5.078	1.451
98	60.023	59.681	60.117	5.029	1.253
100	60.304	60.584	60.366	4.712	1.401
102	60.023	59.681	60.117	4.932	1.129
104	60.241	60.802	60.366	4.736	1.513
106	60.241	60.054	60.428	4.346	1.24
108	60.148	60.428	60.366	4.541	1.079
110	60.054	59.899	60.21	4.224	1.637
112	60.086	60.023	60.272	4.566	1.575
114	60.148	59.805	60.335	4.492	1.513
116	60.304	60.272	60.428	4.175	1.302
118	60.086	60.428	60.272	4.126	1.24
120	60.148	59.992	60.366	4.59	1.352
122	60.335	60.272	60.49	4.663	1.352
124	60.148	60.521	60.335	4.492	1.352
126	60.335	60.428	60.49	4.273	1.141
128	60.21	60.49	60.272	4.492	0.93
130	60.21	60.054	60.335	4.492	0.98
132	60.148	60.335	60.304	5.029	1.116
134	60.023	59.899	60.241	4.81	1.054
136	60.148	60.117	60.304	4.81	1.166
138	60.086	59.961	60.304	4.883	1.24
140	59.992	59.961	60.241	5.029	1.401
142	60.148	60.521	60.366	4.688	1.215
144	59.992	59.961	60.241	4.761	1.389
146	60.148	60.086	60.428	4.614	1.352

Muestra CV1-S5					
Temperatura de secado40°CVelocidad de aire1 m/s					
Espesor	3.5 mm	Tiempo de secado	259 min		
Peso inicial de la muestra	444.5 g	Peso seco de la muestra	18.66 g		

t	МН	%H₂O	CFA	R	R promedio
[min]	[g]	[BH]	[g agua/g sólido seco]	[g agua/cm ² min]	
0	444.5	95.8	22.8095238	0.00192129	0.00180601
5	433	95.6884527	22.1935294	0.00153703	0.00188286
10	421	95.5655582	21.5507526	0.00192129	0.00188286
15	408.5	95.4298654	20.8811934	0.00192129	0.00188286
20	396.5	95.2915511	20.2384166	0.00192129	0.00195971
25	384	95.1382813	19.5688575	0.00230554	0.00203656
30	371	94.9679245	18.8725159	0.00230554	0.00192129
35	357.5	94.7779021	18.149392	0.00192129	0.00180601
40	346	94.6043353	17.5333976	0.00192129	0.00188286
45	334	94.410479	16.8906208	0.00192129	0.00192129
50	321.5	94.1931571	16.2210617	0.00192129	0.00188286
55	309	93.9582524	15.5515025	0.00192129	0.00184444
60	297	93.7141414	14.9087257	0.00153703	0.00184444
65	285	93.4494737	14.2659489	0.00153703	0.00184444
70	273	93.1615385	13.6231721	0.00192129	0.00184444
75	261	92.8471264	12.9803953	0.00192129	0.00184444
80	249	92.5024096	12.3376185	0.00192129	0.00184444
81	246.5	92.4263692	12.2037067	0.00192129	0.00184444
82	244	92.3487705	12.0697948	0.00192129	0.00184444
83	241.5	92.2695652	11.935883	0.00192129	0.00184444
84	239	92.1887029	11.8019712	0.00153703	0.00180601
85	237	92.1227848	11.6948417	0.00192129	0.00184444
90	225	91.7026667	11.0520649	0.00192129	0.00184444
95	213	91.2352113	10.4092881	0.00192129	0.00184444
100	201	90.7119403	9.76651133	0.00192129	0.00180601
105	189	90.1222222	9.12373453	0.00192129	0.00176758
110	177.5	89.4822535	8.5077401	0.00153703	0.00157545
115	166	88.7536145	7.89174567	0.00153703	0.00153703
120	157	88.1089172	7.40966308	0.00153703	0.00172916
125	146	87.2130137	6.82045102	0.00153703	0.00169073
130	134.5	86.1197026	6.20445659	0.00115277	0.00157545
135	124	84.9443548	5.64202689	0.00153703	0.00153703
140	114	83.6236842	5.10637956	0.00153703	0.00153703
145	104	82.0490385	4.57073223	0.00153703	0.0014986

t	MH	%H₂O	CFA	R	B promedio
[min]	[g]	[BH]	[g agua/g sólido seco]	[g agua/cm ² min]	in promedio
150	94	80.1393617	4.0350849	0.00153703	0.0013449
155	84.5	77.9065089	3.52621994	0.00115277	0.00199814
160	76.5	75.5960784	3.09770207	0.00192129	0.00111435
165	58.5	68.0871795	2.13353688	-0.00730089	0.00023055
170	62	69.8887097	2.32101344	0.00076851	0.00096064
175	55.5	66.3621622	1.97284268	0.00076851	0.00088379
180	49.5	62.2848485	1.65145428	0.00076851	0.00065324
185	44	57.5704545	1.35684825	0	0.00042268
190	41	54.4658537	1.19615405	0.00115277	0.00042268
195	38.5	51.5090909	1.06224222	0.00038426	0.00042268
200	35.5	47.4112676	0.90154802	0	0.00049953
205	33	43.4272727	0.76763619	0	0.00046111
210	29	35.6241379	0.55337726	0.00038426	0.00023055
215	27	30.8555556	0.44624779	0	0.00023055
220	26	28.1961538	0.39268306	0.00038426	0.00019213
225	24	22.2125	0.28555359	0	-7.6851E-05
230	23.5	20.5574468	0.25877123	0.00076851	-7.6851E-05
235	25	25.324	0.33911832	-0.00038426	7.6851E-05
240	24.5	23.8	0.31233596	0	0.00011528
245	24	22.2125	0.28555359	-0.00115277	0.0001537
250	23	18.8304348	0.23198886	0	3.7289E-05
255	22	15.1409091	0.17842413	-0.00038426	-7.9125E-05
256	22.5	17.0266667	0.20520649	0.00038426	-2.8419E-06
257	22	15.1409091	0.17842413	0.00038426	-0.00013187
258	21.5	13.1674419	0.15164176	-0.00076851	-0.00038994
259	22.5	17.0266667	0.20520649	-1.1367E-05	-1.1367E-05

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
0	41.128	1770	41.595	15.116	0.868
2	40.848	1770	26.311	17.508	0.831
4	40.319	1770	26.716	18.314	1.116
6	40.039	1770	26.747	18.68	0.881
8	40.226	1770	26.903	19.292	0.868
10	40.35	1770	26.934	19.634	0.831
12	40.132	1770	26.903	19.463	0.905
14	40.412	1770	26.934	19.902	1.005
16	40.07	1770	26.872	19.194	0.918
Tiempo	Temperatura del	Temperatura de la	Temperatura del	% da	Flujo de
--------	-----------------	-------------------------	-----------------------	---------	----------
[min]	túnel	superficie del material	interior del material	Humedad	aire
[]	[°C]	[°C]	[°C]	Hambaad	[m/s]
18	40.163	1770	26.872	19.829	1.191
20	40.132	1770	26.872	19.512	0.744
22	40.35	1770	26.903	19.634	0.93
24	40.132	1770	26.872	19.292	0.881
26	40.101	1770	26.872	18.828	0.695
28	40.319	1770	26.84	19.219	0.583
30	40.35	1770	26.84	18.926	0.831
32	40.07	1770	26.809	19.243	0.868
34	40.039	1770	26.84	20.024	1.017
36	40.008	1770	26.809	19.463	0.583
38	40.195	1770	26.903	18.926	0.868
40	40.132	1770	26.872	19.731	1.178
42	40.195	1770	26.903	19.292	0.707
44	40.163	1770	26.903	19.023	0.967
46	40.195	1770	26.903	19.463	0.831
48	40.381	1770	26.934	19.951	1.166
50	40.132	1770	26.84	19.219	1.067
52	40.039	1770	26.809	19.072	0.707
54	40.008	1770	26.747	19.731	0.918
56	40.257	1770	26.903	19.536	0.943
58	40.101	1770	26.903	19.194	0.707
60	40.195	1770	26.965	19.707	0.98
62	40.35	1770	27.058	19.487	0.893
64	40.101	1770	27.027	19.951	0.905
66	40.039	1770	26.965	19.658	1.178
68	40.132	1770	27.121	19.756	0.856
70	40.132	1770	27.121	19.902	1.166
72	40.132	1770	27.152	19.292	0.67
74	40.07	1770	27.245	19.951	0.831
76	40.132	1770	27.276	19.756	0.744
78	40.039	1770	27.276	19.854	0.893
80	40.008	1770	27.401	20.073	0.794
82	40.101	1770	27.339	19.683	0.695
84	40.226	1770	27.463	19.292	1.166
86	40.163	1770	27.588	19.292	0.905
88	40.226	1770	27.619	19.609	0.881
90	40.288	1770	27.65	19.145	1.178
92	40.101	1770	27.65	19.463	0.657
94	40.101	1770	27.712	19.365	1.079
96	40.506	1770	27.868	19.194	1.017
98	40.008	1770	27.837	19.805	0.744

Tiempo	Temperatura del	Temperatura de la	Temperatura del	% da	Flujo de
[min]	túnel	superficie del material	interior del material	Humedad	aire
[]	[°C]	[°C]	[°C]	Hambaad	[m/s]
100	40.132	1770	27.961	19.561	0.856
102	40.07	1770	28.117	20.049	0.98
104	40.163	1770	28.241	19.683	0.831
106	40.35	1770	28.397	19.365	0.645
108	40.132	1770	28.521	20	0.819
110	40.101	1770	28.584	20.488	1.203
112	40.132	1770	28.708	20.391	0.955
114	40.257	1770	28.926	20.562	0.868
116	40.132	1770	28.988	20.22	0.757
118	40.101	1770	29.175	19.976	0.93
120	40.226	1770	29.393	20.098	0.881
122	40.132	1770	26.405	19.927	0.67
124	40.226	1770	30.856	20.342	0.806
126	40.381	1770	31.167	20.391	0.62
128	40.07	1770	30.918	20.659	1.104
130	40.101	1770	30.638	20.537	0.868
132	40.132	1770	31.012	21.172	1.029
134	40.132	1770	31.105	20.464	0.608
136	40.381	1770	31.292	21.001	0.757
138	40.195	1770	31.012	21.074	1.005
140	40.35	1770	31.074	21.001	0.905
142	40.132	1770	30.763	20.537	0.769
144	40.101	1770	30.732	20.464	0.595
146	40.35	1770	30.825	20.781	0.558
148	40.101	1770	31.043	21.221	0.695
150	40.008	1770	30.638	21.465	0.583
152	40.132	1770	31.136	20.879	0.781
154	40.132	1770	30.949	20.806	0.707
156	40.132	1770	31.074	21.27	1.042
158	40.132	1770	31.136	21.245	0.918
160	40.195	1770	31.074	21.025	0.707
162	40.07	1770	31.043	20.855	0.719
164	40.101	1770	31.105	21.05	0.769
166	40.07	1770	30.856	21.221	0.657
168	40.568	1770	29.362	21.099	0.744
170	40.039	1770	29.393	20.659	1.029
172	40.288	1770	29.549	21.245	0.905
174	39.977	1770	29.704	20.855	0.744
176	40.132	1770	29.922	21.099	0.806
178	39.977	1770	30.109	21.685	0.794
180	40.132	1770	30.42	22.881	0.682

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
182	40.039	1770	30.638	22.954	0.905
184	39.977	1770	30.887	24.492	0.608
186	40.101	1770	31.23	25.592	0.707
188	40.132	1770	31.479	24.834	0.707
190	40.132	1770	31.728	24.736	0.93
192	40.319	1770	31.946	24.81	0.905
194	40.879	1770	29.331	25.763	0.732
196	40.101	1770	29.268	25.568	0.757
198	40.257	1770	29.393	26.227	0.93
200	40.101	1770	29.486	26.862	0.558
202	40.101	1770	29.673	26.886	0.856
204	40.101	1770	29.735	26.032	1.017
206	40.195	1770	29.984	26.423	0.707
208	40.132	1770	30.14	26.813	0.62
210	40.132	1770	30.14	25.739	0.781
212	40.288	1770	30.327	25.617	0.819
214	40.163	1770	30.451	26.496	1.054
216	40.163	1770	30.638	25.885	0.955
218	40.132	1770	30.825	26.618	0.93
220	40.132	1770	31.074	26.423	0.967
222	40.132	1770	31.292	26.496	1.067
224	40.195	1770	31.634	26.154	0.943
226	40.163	1770	31.914	26.154	1.116
228	40.07	1770	32.257	27.033	0.595
230	40.101	1770	32.568	25.739	0.955
232	40.288	1770	33.035	26.032	1.153
234	40.568	1770	33.16	26.374	0.546
236	40.132	1770	33.066	24.858	0.533
238	40.226	1770	33.16	25.446	0.36
240	40.039	1770	33.409	25.422	0.905
242	40.039	1770	33.253	25.837	0.67
244	40.163	1770	34.405	26.007	0.459
246	40.163	1770	36.335	25.226	0.62
248	40.008	1770	37.3	25.617	0.67
250	40.257	1770	38.265	25.885	1.129
252	40.319	1770	39.012	25.348	0.62
254	40.07	1770	39.354	25.934	0.67
256	40.226	1770	39.696	25.959	0.695
258	40.101	1770	39.79	25.837	0.98
260	40.101	1770	39.852	24.932	0.831

Muestra CV1-S6					
Temperatura de secado	60°C	Velocidad de aire	1 m/s		
Espesor	3.5 mm	Tiempo de secado	178 min		
Peso inicial de la muestra	443 g	Peso seco de la muestra	18.60 g		

t [min]	MH [g]	%H₂O [BH]	CFA [g agua/g sólido seco]	R [g agua/cm ² min]	R promedio
0	443	95.8	22.8095238	0.00307406	0.00326619
5	423.5	95.6066116	21.7614748	0.00384257	0.00353517
10	400.5	95.3543071	20.5253144	0.00345832	0.00353517
15	377.5	95.0712583	19.289154	0.00345832	0.00345832
20	354.5	94.751481	18.0529937	0.00384257	0.00349674
25	332.5	94.4042105	16.8705794	0.00345832	0.00353517
30	309	93.9786408	15.607546	0.00345832	0.00349674
35	286.5	93.5057592	14.3982586	0.00384257	0.00341989
40	263.5	92.9388994	13.1620982	0.00307406	0.00330461
45	242	92.3115702	12.006557	0.00345832	0.00322776
50	220.5	91.5619048	10.8510158	0.00345832	0.00311248
55	200	90.697	9.74922068	0.00345832	0.00303563
60	180	89.6633333	8.67429861	0.00307406	0.00280508
65	160.5	88.4074766	7.6262496	0.0026898	0.00265138
70	143.5	87.0341463	6.71256584	0.0026898	0.0025361
75	126	85.2333333	5.77200903	0.0026898	0.00230554
80	110.5	83.161991	4.93894443	0.00230554	0.00219027
85	96	80.61875	4.15962593	0.0026898	0.00199814
90	82	77.3097561	3.40718048	0.00192129	0.00176758
95	70	73.42	2.76222724	0.00192129	0.00157545
100	59	68.4644068	2.1710201	0.00115277	0.00130647
105	49.5	62.4121212	1.66043212	0.00115277	0.00107592
110	42	55.7	1.25733634	0.00153703	0.00092222
115	35.5	47.5887324	0.90798667	0.00115277	0.00069166
120	30	37.98	0.6123831	0.00038426	0.00042268
125	26.5	29.7886792	0.42427174	0	0.00011528
130	24.5	24.0571429	0.31677953	0	0.0001537
135	25	25.576	0.34365259	0.00038426	0.00019213
140	22.5	17.3066667	0.20928733	0	-3.8426E-05
145	22.5	17.3066667	0.20928733	-0.00038426	-7.6851E-05
150	23	19.1043478	0.23616038	0	0
155	23.5	20.8255319	0.26303343	0	0.0001537
160	23	19.1043478	0.23616038	0.00038426	0.0001537
165	21.5	13.4604651	0.15554122	0.00038426	0

t [min]	MH [g]	%H₂O [BH]	CFA [g agua/g sólido seco]	R [g agua/cm² min]	R promedio
170	21	11.4	0.12866817	-0.00038426	0.00012766
175	21.5	13.4604651	0.15554122	0.00076851	0.00038329
176	20.5	9.23902439	0.10179512	0	0.00025488
177	20.5	9.23902439	0.10179512	0.00076851	0.00038233
178	19.5	4.58461538	0.04804902	-3.8598E-06	-3.8598E-06

Tiempo	Temperatura	Temperatura de la	Temperatura del	% de	Flujo de
[min]	del túnel	superficie del material	Interior del material	Humedad	aire
0	[C] 58 501	28 171	36 584	5 225	
2	50.331	1770	27 112	5.225	0.303
 	50.747	1770	25 090	6.3	1 017
6	60 5 2 1	1770	33.083	6.276	0.67
0	50.65	1770	24.002	6.619	0.07
0	60.225	1770	24.053	6.422	1 101
10	50.691	1770	24.520	6.274	1.191
14	59.081	1770	24.525	6.447	0.471
14	50.439	1770	24.005	0.447	0.471
10	59.05	1770	24.391	6.52	0.471
20	60.815 E0.80E	1770	24.04	0.5	1.252
20	59.805	1770	34.710	0.764	1.352
22	60.054	1770	34.934	6.667	0
24	60.241	1770	34.965	6.349	1.153
26	59.588	1770	34.84	6.52	0.707
28	60.521	1770	35.058	6.423	0.446
30	59.805	1770	34.965	6.104	1.265
32	59.743	1770	34.934	6.152	0.211
34	60.521	1770	35.121	6.128	0
36	59.992	1770	34.965	6.226	1.265
38	59.712	1770	34.965	6.177	1.153
40	60.49	1770	35.245	6.226	1.091
42	59.93	1770	35.276	6.252	0
44	59.868	1770	35.307	6.177	2.766
46	59.899	1770	35.245	5.615	0.025
48	60.366	1770	35.339	5.835	1.104
50	59.899	1770	35.339	5.542	1.352
52	59.712	1770	35.339	5.542	0.459
54	60.553	1770	35.525	5.347	0
56	59.961	1770	35.494	5.566	0.31
58	59.868	1770	35.556	5.347	1.141
60	60.304	1770	35.619	5.591	0.794

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
62	60.21	1770	35.743	5.591	0.198
64	59.93	1770	35.774	5.689	1.228
66	59.899	1770	35.992	5.786	0.732
68	60.086	1770	36.21	5.591	0
70	59.992	1770	36.179	5.274	1.215
72	59.65	1770	36.117	5.103	1.005
74	60.521	1770	36.459	5.151	0.595
76	59.93	1770	36.49	5.322	1.104
78	59.868	1770	36.739	5.2	1.401
80	60.459	1770	37.082	5.078	0.843
82	60.241	1770	37.362	5.2	0
84	60.148	1770	37.518	5.176	1.339
86	59.774	1770	37.58	4.858	0
88	60.304	1770	38.171	4.883	1.029
90	60.148	1770	38.296	5.127	0.496
92	59.774	1770	38.576	5.078	1.079
94	60.179	1770	39.354	4.981	0.161
96	60.054	1770	40.319	4.907	0.347
98	60.521	1770	41.875	4.761	0.695
100	60.117	1770	43.494	4.932	0.843
102	59.743	1770	44.988	4.956	0
104	60.272	1770	47.043	4.663	0.819
106	60.428	1770	48.755	4.614	0.695
108	60.21	1770	50.156	4.785	0.037
110	60.148	1770	50.778	4.736	0.98
112	59.805	1770	51.681	4.761	0.967
114	59.961	1770	52.148	4.346	0.372
116	60.677	1770	56.132	3.955	0
118	60.272	1770	57.564	3.711	0.695
120	60.366	1770	58.623	3.613	0
122	60.366	1770	59.37	3.98	0.62
124	59.961	1770	59.37	3.589	0.409
126	59.868	1770	59.339	3.931	1.24
128	59.93	1770	59.588	3.54	0.26
130	59.837	1770	59.681	3.516	0.682
132	59.868	1770	59.681	3.809	0.695
134	60.272	1770	1770	3.784	0.335
136	60.521	1770	1770	4.004	0.347
138	60.304	1770	60.241	4.395	0
140	60.241	1770	60.304	4.224	0
142	57.222	1770	55.79	-25	0.595

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
144	53.175	1770	53.331	-25	1.178
146	50.591	1770	1770	-25	0.633
148	49.066	1770	1770	-25	0
150	47.541	1770	1770	-25	0
152	46.42	1770	1770	-25	0.26
154	45.642	1770	46.763	-25	0.273
156	44.584	1770	45.829	10.988	0.682
158	46.265	1770	46.794	61.953	31.472
160	46.794	1770	48.008	10.207	0.558
162	54.981	1770	54.358	7.741	0.744
164	60.148	1770	56.381	4.932	0.893
166	59.805	1770	56.288	4.028	0.781
168	60.553	1770	57.471	3.735	0.695
170	59.992	1770	57.16	3.662	0.868
172	59.837	1770	57.128	3.735	0.806
174	60.21	1770	57.502	3.052	0.608
176	60.21	1770	57.844	3.369	0.471
178	59.961	1770	57.72	3.467	0.806

Muestra CP1-S1						
Temperatura de secado	60°C	Velocidad de aire	1 m/s			
Espesor	1.5 mm	Tiempo de secado	80 min			
Peso inicial de la muestra	63.71 g	Peso seco de la muestra	1.52 g			

Anexo B. Datos de las cinéticas de secado de Chlorella protothecoides

t [min]	MH [ø]	%H₂O [BH]	CFA [g agua/g sólido seco]	R [g agua/cm ² min]	R promedio
0	63.71	97.6	40.6666667	0.00391481	0.00256791
5	55.22	97.2310033	35.1141631	0.00160005	0.00231477
10	51.75	97.0453333	32.8447653	0.00276665	0.00227281
15	45.75	96.6578361	28.9207346	0.0038687	0.00200029
20	37.36	95.9072805	23.4336316	0.00109283	0.00163878
25	34.99	95.6300657	21.8836394	0.00329232	0.00154702
30	27.85	94.5097307	17.2140428	0.00230554	0.00121917
35	22.85	93.3083589	13.9440172	0.00302948	0.00098896
40	16.28	90.6078624	9.64720347	0.00225021	0.00076224
45	11.4	86.5873684	6.45565845	0.00155855	0.00057624
50	8.02	80.9346633	4.24512112	0.00138333	0.00043591
55	5.02	69.5410359	2.28310574	0.00118044	0.00027801
60	2.46	37.8439024	0.60885261	4.15E-05	9.7519E-05
65	2.37	35.4835443	0.54999215	0.00025361	0.00011152
70	1.82	15.9868132	0.19028933	0.00017522	6.4162E-05
75	1.44	-6.18333333	-0.05823262	1.3833E-05	8.632E-06
80	1.41	-8.44255319	-0.07785277	3.4306E-06	3.4306E-06

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
0	61.051	52.335	54.794	4.102	0
2	60.148	51.992	53.798	3.98	0.794
4	60.179	52.054	53.922	3.906	2.753
6	59.556	51.401	48.257	3.711	1.922
8	61.237	52.553	54.887	3.613	2.952
10	60.179	51.868	53.455	3.516	1.067
12	60.988	51.65	54.763	3.516	0.459
14	60.023	51.276	53.518	3.418	1.352
16	59.432	50.809	52.553	3.54	1.042
18	60.304	49.346	51.494	3.955	0.298
20	60.21	49.969	53.829	5.322	2.17

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
22	59.899	49.844	53.237	7.033	0.099
24	59.992	49.813	52.926	7.155	0
26	59.93	49.875	53.019	7.277	0
28	60.366	51.339	53.673	7.033	0
30	60.397	51.525	52.895	7.375	0
32	59.837	50.996	52.926	6.813	0
34	60.148	51.058	53.082	6.789	0
36	59.93	51.058	53.113	6.935	1.178
38	60.023	51.089	53.206	6.96	0.136
40	59.992	51.339	53.393	6.862	0.099
42	59.992	51.525	53.549	6.911	0
44	60.646	50.591	53.549	6.471	0.161
46	60.739	50.311	54.607	6.618	0.074
48	60.086	50.187	53.642	6.813	0.881
50	60.117	50.218	53.767	6.886	2.394
52	60.086	50.156	53.175	6.252	0.012
54	60.117	50.249	53.268	6.201	0.819
56	59.93	50.187	53.237	6.152	0.831
58	60.054	50.342	53.3	6.104	0.905
60	59.868	50.28	53.424	6.079	0
62	61.051	51.245	54.296	5.615	0.509
64	60.148	51.089	53.704	5.933	0.149
66	59.868	51.588	54.016	5.42	0.149
68	60.21	51.401	53.455	5.591	0.732
70	59.37	50.809	50.156	5.298	0
72	61.331	51.93	54.576	4.834	0.583
74	60.117	51.588	53.518	4.785	0.434
76	60.241	51.837	54.016	4.761	0.459
78	60.21	51.837	53.922	4.663	1.935
80	60.179	51.774	53.891	4.443	0.236

Muestra CP1-S2					
Temperatura de secado	40°C	Velocidad de aire	1 m/s		
Espesor	1.5 mm	Tiempo de secado	150 min		
Peso inicial de la muestra	63.33 g	Peso seco de la muestra	1.51 g		

t [min]	MH [g]	%H₂O [BH]	CFA [g agua/g sólido seco]	R [g agua/cm ² min]	R promedio
0	63.33	97.6	40.6666667	0.00146633	0.00136995
5	60.15	97.4731172	38.5744513	0.00134644	0.00134874
10	57.23	97.3441901	36.6532975	0.00139255	0.00136165
15	54.21	97.1962369	34.6663509	0.00130033	0.00136073
20	51.39	97.0423818	32.8109901	0.00184444	0.00135289
25	47.39	96.7927411	30.1792726	0.00094527	0.00130724
30	45.34	96.6477283	28.8305174	0.00119888	0.00134598
35	42.74	96.4437997	27.119901	0.0014156	0.00135382
40	39.67	96.1685909	25.1000579	0.00138333	0.00135889
45	36.67	95.8551404	23.1262698	0.00140638	0.00130632
50	33.62	95.4791196	21.1195852	0.00125422	0.00130263
55	30.9	95.081165	19.3300174	0.00147555	0.00128511
60	27.7	94.5129242	17.2246434	0.00138333	0.00117029
65	24.7	93.8464777	15.2508553	0.00122194	0.00105732
70	22.05	93.1069388	13.5073425	0.00138794	0.00094758
75	19.04	92.0172269	11.5269751	0.0013326	0.00080878
80	16.15	90.5887307	9.62555924	0.00127727	0.00067783
85	13.38	88.6403587	7.8030949	0.00146633	0.00054872
90	10.2	85.0988235	5.71087952	0.00085766	0.00040209
95	8.34	81.7755396	4.4871309	0.00136949	0.00031217
100	5.37	71.6960894	2.53308069	0.00107899	0.00018721
105	3.03	49.8376238	0.99352598	0.00032739	7.9633E-05
110	2.32	34.4862069	0.52639613	0.00025361	5.2105E-05
115	1.77	14.1288136	0.16453498	0.0001245	2.6917E-05
120	1.5	-1.328	-0.01310595	0	1.2977E-05
125	1.5	-1.328	-0.01310595	2.3055E-05	1.514E-05
130	1.45	-4.82206897	-0.04600242	-1.3833E-05	1.3556E-05
135	1.48	-2.6972973	-0.02626454	0	2.0404E-05
140	1.48	-2.6972973	-0.02626454	-4.15E-05	2.7205E-05
145	1.57	3.18980892	0.0329491	0.00011989	6.1557E-05
150	1.31	-16.0244275	-0.13811253	3.2265E-06	3.2265E-06

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
0	40.101	36.366	37.704	15.433	1.017
2	40.412	26.934	26.342	18.975	0.695
4	40.101	28.148	27.214	21.099	0.211
6	40.35	28.615	27.494	20.708	0
8	40.444	28.646	27.556	21.099	0.769
10	40.132	28.677	27.65	21.978	0
12	40.319	28.677	27.743	21.245	0.905
14	40.537	28.926	28.023	21.855	0.682
16	40.101	28.895	27.961	22.197	0.124
18	41.066	28.926	28.459	20.83	0.273
20	40.786	28.895	28.49	21.025	0.719
22	40.537	28.708	28.148	19.536	1.786
24	40.661	28.77	28.272	20.22	0.422
26	40.257	28.739	28.241	20.61	2.815
28	40.257	28.708	28.241	20.659	1.265
30	40.537	28.802	28.397	20.83	1.984
32	39.914	28.646	27.961	19.097	0
34	40.786	28.864	28.459	19.902	1.203
36	40.226	28.77	28.179	19.805	0.843
38	40.475	28.77	28.459	19.951	0.347
40	40.101	28.708	28.459	20.537	1.178
42	40.319	29.019	27.961	18.901	0
44	40.661	29.3	27.992	18.975	0.223
46	40.163	29.206	27.961	19.316	0
48	40.288	29.268	27.992	19.219	2.481
50	40.444	29.268	27.992	19.17	0
52	40.008	29.206	27.992	17.484	0
54	41.066	29.798	28.304	18.412	0.583
56	40.537	29.673	28.086	18.877	0.657
58	40.848	27.619	35.027	18.167	2.208
60	40.35	28.023	35.556	18.853	1.91
62	40.506	28.926	36.272	17.923	0
64	40.911	29.922	35.992	17.655	0.608
66	40.444	30.482	35.805	18.045	0
68	40.101	31.572	35.681	18.216	2.766
70	40.288	34.872	35.868	18.094	0.608
72	40.693	30.42	29.922	17.606	0
74	40.911	30.451	29.953	17.704	0.769
76	40.381	30.327	29.891	17.972	2.915
78	40.879	30.732	31.883	17.313	1.625
80	40.381	30.482	35.525	17.752	0

Tiempo [min]	Temperatura del túnel	Temperatura de la superficie del material	Temperatura del interior del material	% de Humedad	Flujo de aire
82	40.195	30.576	36.086	17.044	0.918
84	40.817	31.043	36.428	17.386	0.571
86	40.381	31.074	36.241	17.679	0.347
88	41.035	31.821	33.471	16.947	0.36
90	40.599	33.253	35.743	17.264	0.037
92	40.163	34.591	35.712	17.581	0.347
94	41.066	36.926	36.988	16.873	0
96	40.381	35.774	35.868	16.678	0
98	40.35	36.553	35.805	16.873	0.347
100	40.132	36.615	36.054	16.996	0.285
102	40.444	36.957	36.397	16.727	0
104	40.911	31.416	32.444	16.312	0.732
106	40.537	31.198	32.226	16.434	0
108	40.163	31.136	32.537	16.629	0
110	40.288	27.712	35.681	15.775	0
112	40.724	30.078	36.054	15.824	0.099
114	40.506	30.918	36.864	15.726	0.174
116	40.132	30.514	36.739	15.995	0.645
118	40.973	30.794	37.549	15.604	0.347
120	40.506	30.576	37.175	15.628	0.546
122	40.163	30.482	37.113	15.482	0.955
124	40.973	28.584	38.763	15.213	0.905
126	40.568	29.051	37.953	15.238	0.645
128	40.101	29.798	37.673	15.384	0
130	40.132	33.097	37.642	15.213	0.347
132	40.319	35.992	37.829	15.116	0.509
134	39.977	35.494	36.646	15.262	0.298
136	41.315	36.677	38.949	14.554	0.843
138	40.848	36.708	38.358	14.652	0.223
140	40.288	36.615	37.922	14.823	1.997
142	40.07	36.646	37.486	14.798	0.05
144	41.066	37.268	38.607	14.359	1.228
146	40.537	37.113	38.171	14.432	0.558
148	40.879	37.518	39.416	14.383	0
150	41.004	37.268	38.451	13.895	0.211

Muestra CP1-S3					
Temperatura de secado	40°C	Velocidad de aire	1 m/s		
Espesor	2.5 mm	Tiempo de secado	245 min		
Peso inicial de la muestra	107.62 g	Peso seco de la muestra	2.58 g		

t [maim]	MH	%H₂O	CFA	R [= = = = (== 2 = = in]	R promedio
[min]			[g agua/g solido seco]		0.00125707
0	107.62	97.6		0.00138333	0.00135797
5	104.62	97.5311795	39.5051725	0.00155855	0.00133629
10	101.24	97.4487554	38.1965558	0.00164155	0.00131877
15	97.68	97.355774	36.8182494	0.00048878	0.00130817
20	96.62	97.3267646	36.4078548	0.00092222	0.00138932
25	94.62	97.27026	35.6335254	0.00213954	0.00141883
30	89.98	97.1294954	33.8370811	0.0014571	0.0012971
35	86.82	97.0250173	32.6136406	0.0012911	0.00130909
40	84.02	96.9258748	31.5295794	0.00092222	0.00131831
45	82.02	96.8509144	30.75525	0.00177527	0.00136857
50	78.17	96.6958168	29.2646658	0.00116661	0.00134459
55	75.64	96.5852988	28.2851391	0.00138333	0.00138978
60	72.64	96.4442731	27.1236449	0.00153549	0.00138978
65	69.31	96.2734382	25.8343864	0.00130033	0.00137641
70	66.49	96.1153858	24.7425819	0.00121733	0.00138471
75	63.85	95.954769	23.7204671	0.00092222	0.00140131
80	61.85	95.8239612	22.9461376	0.00157699	0.00140177
85	58.43	95.5795311	21.6220343	0.00138333	0.00139762
90	55.43	95.340285	20.4605402	0.00142483	0.00139762
95	52.34	95.0651891	19.2642012	0.00153549	0.00136673
100	49.01	94.7298919	17.9749427	0.00161849	0.00136903
105	45.5	94.3233407	16.6159945	0.00138333	0.00134552
110	42.5	93.9226353	15.4545004	0.00140177	0.00129341
115	39.46	93.4544349	14.2775197	0.00138333	0.00136258
120	36.46	92.915853	13.1160255	0.00138333	0.0012971
125	33.46	92.2806934	11.9545314	0.00092683	0.001239
130	31.45	91.787345	11.1763303	0.00153549	0.00116522
135	28.12	90.8147937	9.8870718	0.00138333	0.00110389
140	25.12	89.7178344	8.72557765	0.00111588	0.0009817
145	22.7	88.621674	7.78863904	0.00155855	0.00090792
150	19.32	86.6310559	6.4800223	0.00138333	0.00078988
155	16.32	84.1735294	5.31852815	0.00086227	0.00063541
160	14.45	82.1253979	4.59453014	0.00209343	0.00054457
165	9.91	73.9366297	2.83680233	0.00072855	0.00033799

t [min]	MH [g]	%H₂O [BH]	CFA [g agua/g sólido seco]	R [g agua/cm ² min]	R promedio
170	8.33	68.9930372	2.22508208	0.00080233	0.00026099
175	6.59	60.8060698	1.55141547	0.00018905	0.00018537
180	6.18	58.2058252	1.39267794	0.00092222	0.00016277
185	4.18	38.2086124	0.61834851	0.00016139	7.2855E-05
190	3.83	32.5618799	0.48284086	0.00037811	5.4872E-05
195	3.01	14.1900332	0.16536579	0.00037811	1.9367E-05
200	2.19	-17.939726	-0.15210927	-0.00016139	-1.8451E-05
205	2.54	-1.68818898	-0.01660162	-4.6111E-05	-2.5692E-06
210	2.64	2.16363636	0.02211485	2.7667E-05	2.8736E-06
215	2.58	-0.11162791	-0.00111503	-4.15E-05	-6.683E-07
220	2.67	3.26292135	0.03372979	4.6111E-05	6.1369E-06
225	2.57	-0.50116732	-0.00498668	-3.6889E-05	-1.8578E-06
230	2.65	2.53283019	0.0259865	2.3055E-05	6.8999E-06
235	2.6	0.65846154	0.00662826	-1.8444E-05	1.5147E-06
240	2.64	2.16363636	0.02211485	2.3055E-05	1.1494E-05
245	2.59	0.27490347	0.00275661	-6.7002E-08	-6.7002E-08

Tiempo [min]	Temperatura del túnel	Temperatura de la superficie del material	Temperatura del interior del material	% de Humedad	Flujo de aire
	[ינ]	[ינ]	[יכן		[m/s]
0	40.537	37.113	26.187	21.05	0.843
2	40.132	37.051	37.829	23.198	2.567
4	40.195	36.957	37.922	23.442	0.769
6	40.101	36.926	37.86	23.491	0.967
8	40.226	36.957	37.953	23.491	0.037
10	40.07	36.926	37.798	23.54	0.583
12	41.066	37.829	38.732	22.295	1.501
14	40.506	37.518	38.047	23.247	0.769
16	40.195	37.424	37.984	23.442	0.484
18	40.786	37.86	38.763	22.71	0.881
20	40.319	37.175	37.953	22.734	0.149
22	40.475	37.611	38.171	22.124	0.459
24	40.132	37.424	37.953	22.417	0.446
26	40.288	37.486	38.016	22.319	0.074
28	40.226	37.642	38.265	22.564	0
30	40.132	37.362	37.86	22.271	1.24
32	40.63	37.455	38.451	21.343	1.067
34	40.288	37.237	37.86	21.685	0
36	40.132	37.237	37.735	21.563	1.563

Tiempo	Temperatura	Temperatura de la	Temperatura del	% de	Flujo de
[min]	del túnel	superficie del material	interior del material	Humedad	aire
		['0]		20.005	[m/s]
38	40.973	37.922	38.576	20.635	0
40	40.475	37.673	38.14	21.099	1.153
42	40.661	38.296	38.918	20.073	0.074
44	40.537	37.798	38.171	20.049	1.005
46	40.132	37.611	37.891	20.586	1.079
48	40.101	37.735	38.047	20.732	2.53
50	40.226	37.829	38.265	20.781	0.384
52	40.537	38.265	38.949	20.122	2.543
54	40.786	37.891	38.358	20.366	2.815
56	40.226	37.611	37.58	18.363	0
58	40.724	37.953	38.265	18.999	0.657
60	40.257	37.735	38.016	19.585	0.484
62	40.101	37.798	38.047	19.976	0
64	40.226	37.86	38.171	19.854	0.707
66	40.101	37.735	37.984	19.78	0
68	40.755	37.642	38.327	18.877	1.426
70	40.381	37.58	38.109	19.292	0.682
72	40.786	38.202	38.887	18.729	0.161
74	40.661	37.829	38.296	19.17	1.65
76	40.07	37.549	37.518	18.363	0.248
78	40.786	38.078	38.296	18.95	0
80	40.412	37.922	38.047	19.243	0.843
82	40.226	37.86	38.047	19.365	0.794
84	40.039	37.735	37.798	19.414	0.744
86	40.35	37.922	38.171	18.877	0.397
88	40.07	37.86	37.984	19.17	2.803
90	40.101	37.891	38.109	19.487	0.781
92	40.226	37.984	38.109	19.463	2.939
94	40.132	37.984	38.109	19.658	0.149
96	40.568	37.86	39.105	18.999	1.042
98	40.942	37.704	38.482	18.95	0.67
100	40.537	37.642	38.296	19.365	0.856
102	40.911	38.171	39.167	18.999	0.843
104	40.63	37.86	38.482	19.194	2.332
106	40.226	37.735	38.233	19.438	0
108	40.848	38.389	39.323	19.17	0
110	40.661	37.984	38.545	19.268	1.426
112	40.195	37.86	38.265	19.609	0.099
114	40.07	37.735	38.202	19.512	0
116	40.07	37.673	38.109	19.438	0.967

Tiempo	Temperatura	Temperatura de la	Temperatura del	% de	Flujo de
[min]	del túnel	superficie del material	interior del material	Humedad	aire
	[°C]	[°C]	[°C]		[m/s]
118	40.506	38.109	38.514	18.926	1.65
120	40.132	37.86	38.171	19.194	0.26
122	40.163	37.86	38.14	19.341	2.939
124	40.039	37.798	38.078	19.438	0.781
126	40.132	37.86	38.202	19.463	1.463
128	40.381	38.047	38.514	19.219	2.853
130	40.195	37.86	38.265	19.121	2.146
132	40.942	38.233	38.949	18.436	0
134	40.537	37.86	38.358	18.656	1.079
136	40.132	37.735	38.109	18.901	0.099
138	41.315	38.451	39.292	18.07	0
140	41.004	38.14	38.7	18.216	0
142	40.63	38.016	38.482	18.192	0
144	40.35	37.891	38.265	18.045	0.819
146	40.63	38.576	39.261	17.337	0.868
148	40.786	38.327	38.669	17.313	0.236
150	40.537	38.265	38.514	16.971	1.005
152	40.755	38.202	39.261	16.287	1.067
154	40.661	37.922	38.545	16.092	0
156	40.163	37.767	38.233	16.312	0.248
158	40.163	37.86	38.389	16.263	1.674
160	40.07	38.109	38.576	15.677	1.017
162	41.097	38.265	38.763	15.286	0
164	40.568	38.078	38.482	15.531	0.595
166	40.226	38.016	38.358	15.579	0
168	40.101	37.953	38.265	15.653	0
170	40.848	38.171	39.105	15.116	0.819
172	40.63	37.953	38.638	15.189	1.265
174	40.506	38.047	38.545	14.847	1.265
176	40.786	38.171	38.856	14.603	0
178	40.35	37.86	38.327	14.896	0.174
180	40.101	37.891	38.451	14.725	0.881
182	40.973	38.109	38.763	14.432	0.831
184	40.568	37.984	38.451	14.481	1.96
186	40.226	37.829	38.233	14.432	1.873
188	40.132	37.891	38.327	14.408	0.174
190	40.226	37.891	38.358	14.359	2.84
192	41.191	38.327	39.136	13.675	0
194	40.786	38.047	38.7	13.602	0.881
196	40.319	37.891	38.389	13.919	1.178

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
198	40.661	38.047	38.669	13.48	1.029
200	40.319	37.86	38.296	13.431	0.719
202	40.101	37.798	38.171	13.333	0.012
204	40.319	37.735	37.953	13.065	1.24
206	40.724	37.984	38.545	12.894	0
208	40.319	37.829	38.265	12.967	0.62
210	40.07	37.704	38.078	13.309	1.377
212	40.942	37.891	38.794	12.894	0.223
214	40.568	37.704	38.42	13.211	0.124
216	40.07	37.704	38.233	13.089	0.223
218	40.786	37.984	38.607	12.821	2.518
220	40.444	37.735	38.296	12.967	1.141
222	41.004	38.14	39.012	12.845	0.211
224	40.693	37.922	38.482	12.943	0.583
226	40.319	37.798	38.233	12.992	0.322
228	39.852	37.455	37.611	12.992	0.521
230	41.564	37.642	39.074	12.355	1.129
232	41.097	37.58	38.763	12.453	0.149
234	40.693	38.14	38.514	12.747	1.885
236	40.288	37.704	38.202	12.869	0.881
238	40.786	37.922	38.545	12.723	0.509
240	40.444	37.798	38.296	12.894	0.409
242	40.101	37.642	37.798	12.992	0.905
244	40.661	38.016	38.514	12.772	1.203
246	40.163	37.486	37.891	12.894	0.769

Muestra CP1-S4							
Temperatura de secado	60°C	Velocidad de aire		le aire	1 m/s		
Espesor 2.5 m		m	Tiempo de sec		140 min		
Peso inicial de la muestra	105.34	4 g	Peso seco o	le la muestra	2.52 g		
t MH	%H₂O	CF.		R	R prom	nedio	
[min] [g]						E060	
0 103.34 5 07.51 07	97.0 4072912	40.000	5526	0.00301042	0.0025	5609	
10 04.52 07	2252645	37.303		0.00137872	0.0024	2024	
10 94.52 97.	3232043	30.380	1612	0.00272054	0.0026	2924	
15 88.02 97.	010002	34.053	2000	0.00301565	0.0025	8//4	
20 82.08 96	.919883	31.400	02990	0.00276665	0.0026	1541	
25 76.08 96.	2701028	29.093	0321	0.00296493	0.0026	1541	
30 69.65 96.	3701938	20.549		0.00123116	0.0026	7674	
35 66.98 96.	2255001	25.493	03704	0.0024531	0.0026	0895	
40 61.66 95.	53998378	23.389	5562	0.00230554	0.0025	7220	
45 56.66 95.	0204654	21.411	.5562	0.00314015	0.0024	/339	
50 49.85 94.	9284654	18./1/	8976	0.00267443	0.0021	8981	
55 44.05 94.	2607037	16.42	3739	0.00302026	0.0019	2836	
60 37.5 9:	3.25824	13.83	2922	0.00230554	0.0016	2218	
65 32.5 92.	2210462	11.85	5199	0.00329232	0.0013	8978	
70 25.36 90.	0309148	9.0310	J107	0.00276665	0.0010	6/4/	
/5 19.36 86.	9413223	6.65//	4318	0.0035782	0.0008	0095	
80 11.6 78.	2055172	3.5883	3172	0.00055333	0.0004	4313	
85 10.4 75.	6907692	3.1136	6369	0.00138333	0.0003	8825	
90 7.4 65.	8356757	1.9270	2993	0.00201966	0.0002	4992	
95 3.02 16.	2860927	0.1945	4465	0.00030433	4.8858	E-05	
100 2.36 -7.1	2542373	-0.0665	51478	5.9944E-05	2.0472	E-05	
105 2.23 -13	3704036	-0.1179	93557	-4.15E-05	1.5538	E-05	
110 2.32 -8.9	7241379	-0.0823	33656	-1.8444E-05	2.3686	E-05	
115 2.36 -7.1	.2542373	-0.0665	51478	6.9166E-05	3.0708	E-05	
120 2.21 -14	3963801	-0.1258	34647	0.00010144	2.3016	E-05	
125 1.99 -27	0432161	-0.2128	36627	4.2063E-18	3.4096	E-06	
130 1.99 -27	0432161	-0.2128	36627	4.6111E-06	4.5461	.E-06	
135 1.98 -27	6848485	-0.2168	32172	-1.8443E-18	4.5136	E-06	
140 1.98 -27	6848485	-0.2168	32172	9.0272E-06	9.0272	E-06	

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
0	60.117	50.436	53.58	6.374	0.905
2	59.868	50.934	53.237	6.079	1.277
4	60.521	50.934	53.051	5.933	1.24
6	59.837	50.747	52.77	5.762	1.091
8	59.961	50.529	52.739	5.054	0.707
10	60.241	51.089	53.455	5.396	0
12	60.428	51.37	53.642	5.347	0.93
14	60.428	51.37	53.767	5.542	0.372
16	60.241	51.401	53.642	5.518	3.125
18	59.961	50.654	53.331	5.176	0
20	59.992	50.591	53.237	5.249	1.054
22	60.054	50.591	53.268	5.347	3.039
24	60.023	50.716	53.455	5.151	0
26	59.837	50.654	53.424	5.322	0.757
28	60.023	50.685	53.237	5.2	0
30	59.93	50.778	53.362	5.2	0
32	60.584	51.619	53.3	4.663	0.881
34	60.21	51.681	53.393	4.981	0
36	60.304	51.774	53.424	4.785	0.012
38	60.49	51.805	53.549	4.614	0.955
40	60.49	51.805	53.549	4.395	1.352
42	60.117	51.774	53.268	4.419	0.571
44	60.148	51.681	53.144	4.395	0.657
46	61.113	51.307	54.265	4.102	0.198
48	60.086	51.058	53.237	3.882	0.26
50	60.148	51.121	53.486	3.809	3.014
52	60.179	51.089	53.518	3.857	0.595
54	60.023	51.214	53.642	3.735	0.459
56	60.148	51.245	53.891	3.711	1.29
58	60.148	51.245	53.362	3.125	0.905
60	60.086	51.339	53.486	3.149	1.178
62	59.992	51.37	53.58	3.149	1.277
64	60.148	50.965	53.798	3.247	0.223
66	60.179	50.996	53.331	3.101	0.186
68	59.65	51.152	53.237	3.101	2.592
70	60.521	51.245	53.642	2.905	0.099
72	59.93	51.183	53.486	2.954	0.794
74	59.992	51.214	53.611	2.808	1.364
76	60.21	51.681	53.3	2.759	0.719
78	59.899	51.681	53.237	2.71	0.36
80	60.148	51.712	53.237	2.368	0.856

Tiempo [min]	Temperatura del túnel [°C]	Temperatura de la superficie del material [°C]	Temperatura del interior del material [°C]	% de Humedad	Flujo de aire [m/s]
82	59.992	51.65	53.331	2.441	1.153
84	59.93	51.65	53.268	2.222	1.017
86	59.712	51.276	52.584	2.246	1.017
88	61.082	52.086	53.735	2.075	0.819
90	60.117	49.564	52.802	5.713	0.012
92	60.179	48.63	53.113	7.155	0.248
94	60.148	48.63	53.206	7.619	0.571
96	60.148	48.63	52.957	7.741	0.174
98	60.148	48.786	52.584	7.179	2.245
100	60.086	48.879	53.144	7.936	0.025
102	59.992	49.004	52.833	7.839	0
104	60.521	49.191	53.331	7.863	0
106	60.086	50.187	52.366	7.35	0.905
108	60.086	50.498	52.864	7.814	3.063
110	60.21	50.623	52.957	7.839	0
112	60.521	50.872	53.455	7.741	0
114	60.646	51.401	54.047	7.399	0.384
116	60.117	50.903	53.082	7.228	3.125
118	60.148	51.276	53.486	7.253	1.129
120	60.49	51.339	53.922	7.057	0
122	60.054	51.027	53.424	7.008	1.302
124	60.428	49.595	53.86	6.886	3.039
126	60.397	50.716	53.673	6.886	2.468
128	60.179	50.591	53.518	7.204	0
130	60.086	50.903	53.518	7.179	0.459
132	60.086	50.187	53.3	6.691	1.29
134	60.117	50.28	53.704	6.667	0
136	60.148	50.187	53.642	6.398	0.571
138	60.241	50.311	53.611	6.545	0
140	60.335	50.342	54.016	6.471	0
142	60.023	50.374	53.455	6.252	0.372

Anexo C. Datos del contenido de humedad en diferentes tiempos de secado en *Chlorella protothecoides*

Muestra	Condiciones de secado	Tiempo [min]	% de Humedad Promedio [BH]	Promedio [g agua/g ss]	% KF Promedio
		0	97.6	40.88	137.1
		10	97.4	37.80	62.81
		20	97.2	34.14	65.02
CD1 C1	60°C 1 5 mm	30	96.2	25.19	61.45
CP1-51	60 C 1.5 mm	40	96.1	24.89	55.22
		50	92.3	12.82	61.00
		60	90.9	9.995	63.25
		71	9.3	0.103	7.237
		0	97.6	40.88	137.1
		20	97.4	37.98	69.74
CP1-S2	40°C 1.5 mm	40	97.0	32.62	64.32
		60	95.9	23.70	60.38
		150	11.0	0.123	7.979
		0	97.6	40.88	137.1
		20	97.6	40.72	62.20
CP1-S3	40°C 2.5 mm	40	97.2	34.81	64.84
		60	97.0	32.37	65.56
		245	8.6	0.093	6.448
		0	97.6	40.88	137.1
		20	97.4	37.82	90.82
CP1-S4	60°C 2.5 mm	40	96.5	27.68	66.7
		60	95.3	20.36	64.29
		140	7.1	0.076	5.540

Anexo D. Comparación gravimétrica del contenido de lípidos durante el secado en *Chlorella protothecoides*

Condiciones de secado	Tiempo [min]	%Humedad Promedio [BH]	Promedio [mg EOT/g ss]
	20	97.2	1015.59
60°C 1 5 mm	40	96.1	320.01
60 C 1.5 mm	60	90.9	162.22
	71	9.3	50.42
	20	97.4	394.99
40°C 1.5 mm	40	97.0	223.02
	60	95.9	215.40
	150	11.0	47.74
	20	97.6	133.83
40°C 2.5 mm	40	97.2	97.76
	60	97.0	88.50
	245	8.6	54.54
	20	97.4	103.80
60°C 2 5 mm	40	96.5	65.83
00 C 2.5 mm	60	95.3	58.59
	140	7.1	49.65

Anexo E. Comparación gravimétrica del contenido de lípidos mediante diferentes métodos de extracción en *Chlorella vulgaris*

Condiciones de secado	%Humedad Promedio [BH]	Método de extracción	EOT Promedio [mg EOT/g ss]
		Soxhlet	24.84
40°C 1 5 mm	C F	Hexano en frío	31.21
40 C 1.5 mm	6.5	ASE	97.36
		Metanol/Hexano	114.04
		Soxhlet	25.83
60°C 1 5 mm	0.0	Hexano en frío	36.35
00 C 1.5 mm	8.9	ASE	99.20
		Metanol/Hexano	71.63
		Soxhlet	29.22
40°C 2.5 mm	0.1	Hexano en frío	24.92
	9.1	ASE	97.56
		Metanol/Hexano	111.21
		Soxhlet	27.44
60°C 2 5 mm	0.0	Hexano en frío	22.57
00 C 2.5 mm	8.8	ASE	91.27
		Metanol/Hexano	131.30
		Soxhlet	27.97
40°C 3 5 mm	11 5	Hexano en frío	27.06
40 C 3.5 mm	11.5	ASE	96.51
		Metanol/Hexano	100.03
		Soxhlet	28.31
60°C 3.5 mm	8.4	Hexano en frío	17.42
00 0 0.5 mm	0.7	ASE	87.07
		Metanol/Hexano	104.61

Anexo F. Análisis estadístico del contenido de EOT mediante diferentes métodos de extracción en *Chlorella vulgaris*

Extracción por el método Folch modificado con metanol y posterior extracción líquido-líquido con hexano

Analysis of Variance	Table f	or Contenido de EC	OT (mg EOT/g ss)			
Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Temperatura (°C)	1	157.2947	157.2947	6.18	0.028652*	0.627106
B: Espesor (mm)	2	2512.139	1256.069	49.34	0.000002*	1.000000
AB	2	3177.07	1588.535	62.40	0.000000*	1.000000
S	12	305.4643	25.45535			
Total (Adjusted)	17	6151.968				
Total	18					
* Term significant at a	lpha = 0	.05				
Means and Standard	Errors	of Contenido de E	OT (mg EOT/g ss)			
_				Stan	dard	
Term		Count	Mean	Erro	r	
All		18	105.4706			
A: Temperatura (°C)						
40°C		9	108.4267	1.68	1777	
60°C		9	102.5144	1.68	1777	
B: Espesor (mm)						
1.5 mm		6	92.83667	2.05	9747	

121.255

102.32

114.04

111.21

100.03

131.3

104.61

71.63333

2.059747

2.059747

2.912923

2.912923

2.912923

2.912923

2.912923

2.912923

6

6

3

2.5 mm

3.5 mm

40°C,1.5 mm

40°C,2.5 mm 40°C,2.5 mm 60°C,3.5 mm 60°C,2.5 mm

60°C,3.5 mm

AB: Temperatura (°C), Espesor (mm)

Extracción por el método Soxhlet con hexano

Analysis of Variance Table for Contenido de EOT (mg EOT/g ss)

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Temperatura (°C)	1	2.261356	2.261356	0.21	0.652950	0.070975
B: Espesor (mm)	2	25.68484	12.84242	1.21	0.332781	0.214868
ABÍÍÍ	2	15.44818	7.724089	0.73	0.503782	0.145107
S	12	127.6146	10.63455			
Total (Adjusted)	17	171.009				
Total	18					

* Term significant at alpha = 0.05

Means and Standard Errors of Contenido de EOT (mg EOT/g ss)

		3	Standard
Term	Count	Mean	Error
All	18	27.26889	
A: Temperatura (°C)			
40°C	9	27.62333	1.087022
60°C	9	26.91444	1.087022
B: Espesor (mm)			
1.5 mm	6	25.61667	1.331325
2.5 mm	6	27.79	1.331325
3.5 mm	6	28.4	1.331325
AB: Temperatura (°C),Espesor (mm)			
40°C,1.5 mm	3	24.80667	1.882777
40°C,2.5 mm	3	29.24667	1.882777
40°C,3.5 mm	3	28.81667	1.882777
60°C,1.5 mm	3	26.42667	1.882777
60°C,2.5 mm	3	26.33333	1.882777
60°C,3.5 mm	3	27.98333	1.882777

Anexo G. Análisis estadístico de la comparación de EOT después de los tratamientos de secado (extracción Folch con metanol/extracción líquido-líquido con hexano)

Analysis of Variance	Table f	or Contenido de	EOT (mg EOT/g ss)			
Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Especie	1	470.7318	470.7318	13.09	0.002308*	0.924204
B: Temperatura (°C)	1	11.084	11.084	0.31	0.586421	0.081833
AB	1	0.3978375	0.3978375	0.01	0.917533	0.051124
C: Espesor (mm)	1	759.0375	759.0375	21.11	0.000299*	0.990477
AC	1	1220.513	1220.513	33.95	0.000026*	0.999759
BC	1	24.30094	24.30094	0.68	0.423096	0.120886
ABC	1	18.9215	18.9215	0.53	0.478663	0.104876
S	16	575.2817	35.9551			
Total (Adjusted)	23	3080.269				
Total	24					

* Term significant at alpha = 0.05

Means and Standard Errors of Contenido de EOT (mg EOT/g ss)

		(3 5)	Standard
Term	Count	Mean	Error
All	24	55.01625	
A: Especie			
CP	12	59.445	1.730971
CV	12	50.5875	1.730971
B: Temperatura (°C)			
40	12	55.69584	1.730971
60	12	54.33667	1.730971
C: Espesor (mm)			
1.5	12	60.64	1.730971
2.5	12	49.3925	1.730971
AB: Especie, Temperatura (°C)			
CP,40	6	60.25333	2.447962
CP,60	6	58.63667	2.447962
CV,40	6	51.13833	2.447962
CV,60	6	50.03667	2.447962
AC: Especie, Espesor (mm)			
CP,1.5	6	72.2	2.447962
CP,2.5	6	46.69	2.447962
CV,1.5	6	49.08	2.447962
CV,2.5	6	52.095	2.447962
BC: Temperatura (°C),Espesor (mm)			
40,1.5	6	60.31333	2.447962
40,2.5	6	51.07833	2.447962
60,1.5	6	60.96667	2.447962
60,2.5	6	47.70667	2.447962

CP 40 1 5	`´' ```	72 89	3 46 194 1
CP.40.2.5	3	47,61666	3,46194
CP.60,1.5	3	71.51	3.46194
CP,60,2.5	3	45.76333	3.46194
CV,40,1.5	3	47.73667	3.46194
CV,40,2.5	3	54.54	3.46194
CV,60,1.5	3	50.42333	3.46194
CV,60,2.5	3	49.65	3.46194

Anexo H. Análisis estadístico de la comparación de EOT después de los tratamientos de secado (extracción Soxhlet con hexano)

Analysis of Variance Table for Contenido de EOT (mg EOT/g ss)								
Source		Sum of	Mean		Prob	Power		
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)		
A: Especie	1	3494.989	3494.989	586.24	0.000000*	1.000000		
B: Temperatura (°C)	1	20.0934	20.0934	3.37	0.085030	0.407519		
AB	1	36.80327	36.80327	6.17	0.024418*	0.645717		
C: Espesor (mm)	1	4.524017	4.524017	0.76	0.396571	0.129821		
AC	1	55.51042	55.51042	9.31	0.007616*	0.817049		
BC	1	111.8017	111.8017	18.75	0.000517*	0.982069		
ABC	1	25.215	25.215	4.23	0.056415	0.489169		
S	16	95.38647	5.961654					
Total (Adjusted)	23	3844.323						
Total	24							

* Term significant at alpha = 0.05

Means and Standard Errors of Contenido de EOT (mg EOT/g ss)

			Standard
Term All	Count 24	Mean 38.77083	Error
A: Especie			
CP	12	50.83833	0.7048436
CV . (IO)	12	26.70333	0.7048436
B: Temperatura (°C)	40	07.05500	0.7040400
40	12	37.85583	0.7048436
	12	39.00503	0.7040430
C: Espesor (mm)	10	20.205	0 7040426
25	12	39.200	0.7040430
AB: Especie Temperatura (°C)	12	30.33007	0.1040450
CP 40	6	48 68 5	0 9967994
CP 60	ĕ	52 99 166	0.9967994
CV 40	ĕ	27 02 667	0 996 7994
CV 60	Ğ	26.38	0 996 7 994
AC: Especie.Espesor (mm)	-		
CP,1.5	6	52.79333	0.9967994
CP,2.5	6	48.88334	0.9967994
CV,1.5	6	25.61667	0.9967994
CV,2.5	6	27.79	0.9967994
BC: Temperatura (°C), Espesor (mn	ו)		
40,1.5	6	36.13167	0.9967994
40,2.5	6	39.58	0.9967994
60,1.5	6	42.27833	0.9967994
60,2.5	6	37.09333	0.9967994
ABC: Especie, Temperatura (°C), Es	pesor (mm)		
CP,40,1.5	3	47.45667	1.409687
CP,40,2.5	3	49.91333	1.409687
CP,60,1.5	3	58.13	1.409687
CP,60,2.5	3	47.85333	1.409687
CV,40,1.5	3	24.80667	1.40968/
CV,40,2.5	3	29.2400/	1.40968/
CV 60 2 5	3	20.4200/	1.40968/
CV,00,2.5	3	20.33333	1.409007

Anexo I. Cromatograma de las extracciones con hexano por el método Soxhlet

Chlorella vulgaris

Tratamiento: 60°C, 3.5 mm

Tratamiento: 60°C, 2.5 mm

Tratamiento: 60°C, 1.5 mm

Tratamiento: 40°C, 3.5 mm

Tratamiento: 40°C, 2.5 mm

Método de extracción: Soxhlet con hexano

. ППППП 6.0 5.0 7.0 31.0 32.0 3.0 4.0 29.0 30.0

Tratamiento: 40°C, 1.5 mm

Tratamiento: Liofilización

Tratamiento: Concentrado Húmedo

Anexo J. Cromatograma de las extracciones con hexano por el método ASE

Chlorella vulgaris

Tratamiento: 60°C, 3.5 mm

Tratamiento: 60°C, 2.5 mm

Tratamiento: 60°C, 1.5 mm

Tratamiento: 40°C, 3.5 mm

Tratamiento: 40°C, 2.5 mm

Tratamiento: 40°C, 1.5 mm

Anexo K. Cromatograma de las extracciones con hexano por el método Folch. modificado

Chlorella vulgaris

Tratamiento: 60°C, 3.5 mm

Tratamiento: 60°C, 2.5 mm

Tratamiento: 60°C, 1.5 mm

Tratamiento: 40°C, 3.5 mm

Tratamiento: 40°C, 2.5 mm

Tratamiento: 40°C, 1.5 mm

Anexo L. Cromatograma de las extracciones por el método Folch. modificado con metanol y extracción líquido-líquido con hexano

Chlorella vulgaris

Tratamiento: 60°C, 3.5 mm

Método de extracción: Folch. modificado con metanol y extracción líquido-líquido con hexano

1 0.0 1.0 2.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0

Tratamiento: 60°C, 2.5 mm

Tratamiento: 60°C, 1.5 mm

Tratamiento: 40°C, 3.5 mm

Tratamiento: 40°C, 2.5 mm

Tratamiento: 40°C, 1.5 mm

