

Instituto Politécnico Nacional

CENTRO INTERDISCIPLINARIO DE INVESTIGACIÓN PARA EL DESARROLLO INTEGRAL REGIONAL UNIDAD OAXACA

DOCTORADO EN CIENCIAS EN CONSERVACIÓN Y APROVECHAMIENTO DE RECURSOS NATURALES (INGENIERÍA DE PROCESOS)

SECADO CONVECTIVO DE AJO (Allium sativum, L.) CON CONDICIONES VARIABLES DE OPERACIÓN

Tesis que para obtener el grado de DOCTOR EN CIENCIAS

> PRESENTA: Anabel López Ortiz

BAJO LA DIRECCIÓN

DR. JUAN RODRIGUEZ RAMÍREZ

SANTA CRUZ XOXOCOTLÁN, OAX.

Diciembre 2011

INSTITUTO POLITECNICO NACIONAL SECRETARIA DE INVESTIGACION Y POSGRADO

ACTA DE REVISION DE TESIS

En la Ciudad de <u>Oaxaca de Juárez</u> siendo las <u>13:00</u> horas del día <u>25</u> del mes de noviembre del <u>2011</u> se reunieron los miembros de la Comisión Revisora de Tesis designada por el Colegio de Profesores de Estudios de Posgrado e Investigación del Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca (CIIDIR-OAXACA) para examinar la tesis de grado titulada: "Secado convectivo de ajo (*Allium sativum*, L.) con condiciones variables de operación "

López Ortiz Anabel Apellido paterno nombre(s) materno Con registro: B 0 7 2 7 2 1 **CIENCIAS CONSERVACIÓN** aspirante al grado de: DOCTORADO EN EN Y APROVECHAMIENTO DE RECURSOS NATURALES Después de intercambiar opiniones los miembros de la Comisión manifestaron SU APROBACION DE LA TESIS, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes. LA COMISION REVISORA Director de tesis Dr. Juan Rodríguez Ramírez Dra. Lilia Leticia Méndez Lagunas Dra, Irasema Anaya Sosa Dr. Pedro Montes García Dr. Sadoth Sandoval/Forres EL PRESIDENTE DEL COLEGIO Dr. Juan Rodríguez Ramírez CENTRO INTERDISCIPLINARIO DE INVESTIGACION PARA EL DESARROLLO INTEGRAL REGIONAL C.I.I.D.I.R. UNIDAD OAXACA PN

INSTITUTO POLITÉCNICO NACIONAL secretaría de investigación y posgrado

CARTA CESION DE DERECHOS

En la Ciudad de Oaxaca de Juárez el día 22 del mes noviembre del año 2011, el (la) que suscribe López Ortiz Anabel alumno (a) del Programa de DOCTORADO EN CIENCIAS EN CONSERVACIÓN Y APROVECHAMIENTO DE RECURSOS NATURALES con número de registro B071272, adscrito al Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, manifiesta que es autor (a) intelectual del presente trabajo de Tesis bajo la dirección del Dr. Juan Rodríguez Ramírez. y cede los derechos del trabajo titulado: "Secado convectivo de ajo (Allium sativum, L.) con condiciones variables de operación " al Instituto Politécnico Nacional para su difusión, con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o director del trabajo. Este puede ser obtenido escribiendo a la siguiente dirección **Calle Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca**, e-mail: <u>posgradoax@ipn.mx</u> ó ana_l_oz@hotmail.com Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo.

López Ortiz Anabel

CENTRO INTERDISCIPLINARIO DE INVESTIGACION PARA EL DESARROLLO INTEGRAL REGIONAL C.I.I.D.I.R. UNIDAD OAXACA I.P.N.

SECADO CONVECTIVO DE AJO (Allium sativum, L.) CON CONDICIONES VARIABLES DE OPERACIÓN

Por: Anabel López Ortiz

Resumen

El ajo es un material biológico altamente sensible a cambios de temperatura. Durante el proceso de secado la estructura celular es fragmentada, consecuentemente son formados compuestos volátiles y bio-activos. Estos cambios en la estructura interna se reflejan en las variaciones de las propiedades estructurales (densidad real, densidad aparente y porosidad). Éstas frecuentemente han sido expresadas únicamente en función del contenido de humedad (Lozano, Rostein y Urbicain 1983; Madamba, Driscoll y Buckle 1994) y muy pocas veces en función de la temperatura del aire de secado y del contenido de humedad. Estas dependencias no son suficientes para explicar la no linealidad de la densidad a bajos contenidos de humedad.

El presente trabajo tiene como objetivo estudiar el efecto del secado noisotérmico (variación de la temperatura en forma de una onda trapezoidal a diferentes periodos de onda: 60, 80, 120 y 160 min) e isotérmico (a 40, 50 y 60°C) en el deterioro de la calidad del ajo en tiempo real a través las diferentes variables respuesta: densidad real (ρ_p), densidad aparente (ρ_b), porosidad (ϵ), temperatura de transición vítrea (T_g), temperatura de la superficie (T_s) de hojuelas de ajo, temperatura en el interior (T_i) de hojuelas de ajo, contenido de humedad (X), difusividad efectiva (D) y agrietamiento del ajo rebanado con espesor inicial de 2 ± 0.25 mm; para obtener ecuaciones que describan el comportamiento de las variables respuestas y predecir el momento adecuado para detener el proceso de secado.

Se encontró que ρ_b , ρ_p , ϵ , y D son función de la temperatura del aire de secado, contenido de humedad y de la fase en la que se encuentra el material. Se ubicó un punto crítico en la intersección de T_i, T_s, y T_g; este punto se identificó como un cambio de fase de segundo orden. Este cambio de fase de segundo orden fue asociado al cambio de pendiente en la tendencia de las propiedades estructurales (ρ_b , ρ_p y ϵ). Un cambio de tendencia en la porosidad (ϵ) con respecto al contenido de humedad, fue particularmente drástico a altas temperaturas de secado y bajos contenidos de humedad. Los datos experimentales de ρ_b , ρ_p y ϵ se ajustaron apropiadamente (R² > 0.85) a una ecuación no lineal de tres términos exponenciales. La densidad real durante el proceso de secado fue posible predecirla con un modelo semi-empírico, con una R² = 96.34 en comparación con los datos experimentales.

Dirigida por: Dr. Juan Rodríguez Ramírez.

ABSTRACT

Garlic is a biological material highly sensitive to temperature changes. During the drying process, cellular structure is fragmented, resulting in the formation of volatile bio-active compounds. These changes in internal structure are reflected in changes in the structural properties (true density, apparent density and porosity). However, these structural properties have often been expressed only in terms of moisture content (Lozano, Rostein and Urbicain 1983; Madamba, Driscoll and Buckle 1994) and have seldom been reported as a function of both drying air temperature and moisture content. These functions are not enough to explain the non-linearity of density at low water contents.

The aim of this study was to study the effect of non-isothermal drying (trapezoidal wave profile at different wave periods: 60, 80, 120 and 160 min) and isothermal (at 40, 50 and 60 °C) on the quality deg radation of garlic during drying. True density (ρ_p), apparent density (ρ_b), porosity (ϵ), glass transition temperature (T_g), surface temperature (T_s), inside temperature (T_i), moisture content (X), effective diffusivity (D) and cracking were analyzed in sliced garlic (initial thickness 2 ± 0.25 mm) in order to derive equations that describe the behavior of these structural variables and aid in the identification of the appropriate time to stop the drying process. A critical point in the intersection of T_i , T_s and T_g was found; this point was identified as a second order phase transition. Diffusivity and slope changes in ρ_b , ρ_p and ϵ with respect to moisture content were found to be related to this critical point. Experimental data for ρ_b , ρ_p and ϵ were fitted to a non-linear equation with three exponential terms with respect to moisture content, with an $R^2 > 0.85$. A semi-empirical model for predicting changes in particle density during the drying process was obtained, with an $R^2 = 96.34$.

AGRADECIMIENTOS

AL CONACYT, Por el apoyo económico otorgado para la realización de los estudios de Doctorado y la presente tesis.

Al Instituto Politécnico Nacional, por el apoyo brindado para la realización de la presente tesis, mediante el proyecto SIP-20110358, "Efecto del secado en las propiedades físicas de los materiales deshidratados."

Al CIIDIR-IPN-OAXACA, por el apoyo y las facilidades brindadas para la realización de este trabajo en sus instalaciones.

Al Dr. Juan Rodríguez Ramírez, por su paciencia, apoyo, dirección y seguimiento del presente trabajo.

A la Dra. Lilia Méndez Lagunas, por su ayuda y colaboración en el trabajo de tesis presentado.

Al comité revisor del presente trabajo, por su colaboración en la revisión del presente trabajo.

Y a Todos las personas que de alguna forma contribuyeron a la realización de este trabajo.

A mis padres: Gabriel López Chiñas y Evelia Ortiz Martínez. Quienes nunca me dejaron caer, me impulsaron para superarme cada día y me brindaron su apoyo cuando más débil me sentía.

A mis hermanas: Jessica, Maritza y la pequeña Paola Quienes brindaron su apoyo y sabios consejos durante los momentos más difíciles de los últimos 4 años.

> A mis hijos: Moisés y Fernanda Quienes son la enorme felicidad de mi vida. Son el motor que me impulsa a seguir cada día. Por quienes he decidido seguir adelante. La fuente de mis inagotables risas al verlos crecer y superarse.

A mis abuelitos: Feliciano y Andrea Quienes en todo momento me apoyaron a seguir adelante con mi desarrollo profesional.

> A mi abuelita: Minerva Por su gran amor. Por sus oraciones a Dios para pedir que me diera dirección y sabiduría.

A mis Tíos: Quienes han sido mi respaldo y me han brindando seguridad, amor y felicidad.

A todos

Quienes de alguna manera participaron para lograr finalmente este sueño que desde niña estaba en mi corazón.

CONTENIDO

Lista de tablas Lista de anexos Nomenclatura	ii
Lista de anexos Nomenclatura	iii
Nomenclatura.1.INTRODUCCIÓN.1.1.Problemática.1.2.Justificación.1.3.Objetivos.1.4.Hipótesis.2.MARCO TEÓRICO.	iv
1. INTRODUCCIÓN. 1.1. Problemática. 1.2. Justificación. 1.3. Objetivos. 1.4. Hipótesis. 2. MARCO TEÓRICO.	v
1.1.Problemática1.2.Justificación.1.3.Objetivos.1.4.Hipótesis.2.MARCO TEÓRICO.	1
 1.2. Justificación. 1.3. Objetivos. 1.4. Hipótesis. 2. MARCO TEÓRICO. 	2
1.3. Objetivos. 1.4. Hipótesis. 2. MARCO TEÓRICO	3
1.4. Hipótesis. 2. MARCO TEÓRICO	4
2. MARCO TEÓRICO	5
	6
2.1. Secado por convección	6
2.2. Transferencia de masa y calor en el secado	10
2.3. Coeficientes convectivos de masa y calor	16
2.4. Características generales del ajo	17
2.5. Agrietamiento y micro estructura celular	21
2.6. Propiedades estructurales	
2.7. <i>Transiciones de fase en los alimentos</i>	
2.8. Temperatura de transición vítrea (Tg)	
3. METODOLOGIA.	41
3.1. Condiciones de secado	41
3.2. Determinaciones de la densidad real ajo deshidratado	
3.3. Determinación de la densidad aparente ajo deshidratado	
3.4. Medición de volumen de hojuelas de ajo	45
3.5. Determinación de la porosidad del ajo deshidratado	45
3.6. Ajuste de datos experimentales	
3.7. Determinación de micro estructura	
3.8. Difusividad efectiva	
<i>3.9. Determinación de los coeficientes convectivos de masa y calor</i>	
3.10. Temperatura de transición vítrea (T_g)	
4. ANALISIS Y DISCUSION DE RESULTADOS	48
4.1. Deshidratación a temperatura constate	
4.2. Deshidratación con perfiles en forma de onda trapezoidal	65
5. CONCLUSIONES	75
6. BIBLIOGRAFÍA	77
7. ANEXOS	

Ø

Lista de figuras

Figura 1.	<i>Tigura 1.</i> Ajo deshidratado por convección mostrando la variación de X/Xo con respecto a la temperatura de secado (a), velocidad del aire (b), humedad relativa (c) y			
	espesor (d) (Pezzutti y Crapiste, 1997)	8		
Figura 2.	Perfil de calentamiento del aire en forma de onda cuadrada	9		
Figura 3.	Perfil de calentamiento del aire en forma de onda sinusoidal	9		
Figura 4.	Perfil de calentamiento del aire en forma de onda trapezoidal	10		
Figura 5.	Transporte de masa y calor durante el proceso de secado de un material alimenticio (Aguilera, 2003)	11		
Figura 6.	Composición celular del ajo (Modificado de Jones y col., 2004; Aguilera y Stanley, 1999)	18		
Figura 7.	Biosíntesis de precursores del ajo a tiosulfinatos.	20		
Figura 8.	Foto micrográfica de gránulos de almidón de castaña deshidratada (Attanasio, 2004)	22		
Figura 9.	Foto micrográfica de ajo(a) fresco y (b) deshidratado por liofilización a -25°C (Sablani y col 2007)	22		
Figura 10.	a) Visualización de conceptos 1, 2, 3 y 4; b) tipos de señales de electrones	22 24		
Figura 11	Cambio de porosidad en función del contenido de humedad A y B con punto de	24		
Figura 11.	cumoto de porosidad en juncion del comentato de numedad A y D con punto de	25		
Eigung 12	Enversion, C y D sin punio de inversion Kanman, Hussain y Ng (2002)	55		
Figura 12.	Esquematizacion de los estados más frecuentes en que pueden encontrarse los	27		
Figura 13.	<i>Ejemplo del perfil de calentamiento ascendente (A) de aire utilizado en los</i>	37		
T . 14	programas cíclicos de secado	42		
Figura 14.	(a) humedad adimensional durante el secado convectivo de ajo a temperatura constante, (b)humedad adimensional de ajo durante el secado en escala			
	logaritmica a 40, 50 y 60°C	48		
Figura 15.	(a) Pérdida de humedad (dx/dt) durante el secado convectivo de ajo a temperatura			
	constante, (b) humedad absoluta del aire durante el secado a 40, 50 y 60°C	49		
Figura 16.	Variación de la Difusividad efectiva con respecto X/X0	50		
Figura 17.	(a) Densidad real y (b) densidad aparente del ajo durante el secado convectivo a			
	temperatura constante de 40, 50 y 60°C. Presente trabajo: ecuación 50, Propuesta			
	por Lozano, Rostein y Urbicain, (1983) para ρ p y ρ b: Ecuaciones 16 y 20 respectivamente	52		
Figura 18	(a)Comportamiento porosidad durante el proceso de secado (b) Densidad real			
1 igura 10.	densidad anarente y temperatura de transición vitea de ajo, deshidratado a			
	temperatura constante ($40, 50 \times 60^{\circ}$ C) calculadas en base a X-0 1 kow/kass	53		
Figura 10	(a) Dansidad del sólido seco obtanida con la acuación 51 y (b) temperatura en al			
Figura 19.	(a) Densiada del solido seco obientad con la ecuación 51 y (b) temperatura en el	56		
Elauna 20	Companyación de dates emerimentales de densidad neal convelences entenidas con	50		
rigura 20.	Comparación de dalos experimentales de densidad real con valores obientaos con			
	las ecuaciones propuesias por Boukouvalas y colaboadores, (2000) (Ecs. 12, 17 y			
	(18); por Lozano, Rostein y Urbicain, (1985) (Ec. 10) y con las ecuaciones	57		
E: 01	propuestas en el presente trabajo (Ecs. 12, 17 y 51).	30		
Figura 21.	Datos de encogimiento (utilizando el metodo de Dimensiones geometricas) de			
	hojuelas de ajo deshidratadas por convección a 40, 50 y 60 °C (a. Trabajo			
	experimental no publicado en tesis de maestría, 2006; b. Presente trabajo, 2007)	57		
Figura 22.	a) Encogimiento de diferentes productos (Lozano, Rostein y Urbicain, 1983), b)			
	Datos de encogimiento (utilizando el método de fuerza boyante) de hojuelas de ajo			
	deshidratadas por convección a 40, 50 y 60 °C (Presente trabajo, 2007)	58		
Figura 23.	Colapso de muestras de ajo utilizando la ecuación 35 a) datos del 2006 (método:			
	dimensiones geométricas), b) datos del 2007 (método: fuerza boyante)	59		
Figura 24.	Calculo de densidad del ajo deshidratado por convección utilizando las			
	ecuaciones de: a) Khalloufi, Almeida-Rivera y Bongers, (2009), Ec. 30; b)			
	Moreira, Figueiredo y Sereno, (2000), Ec. 29; Zogzas, Maroulis y Marinos-			
	Kouris, (1994), Ec. 24; Lozano, Rostein y Urbicain, (1983), Ec. 20	60		

W

B

Figura 25.	Calculo de densidad aparente a) con datos de volumen de Lozano. Rostein v	
0	Urbicain, (1983) utilizando la ecuación de 29; b) con datos de ajo del 2007	
	utilizando las ecuaciones 24 y 29	61
Figura 26.	Microestructura del ajo fresco (a), deshidratado a $40^{\circ}C$ (b), deshidratado a $50^{\circ}C$ (c) and deshidratado $60^{\circ}C$ (d)	62
Figura 27.	Temperatura de superficie, temperatura interna, temperatura de transición vítrea y pérdida de humedad de muestras deshidratadas con perfiles de calentamiento trapezoidales A y D con diferentes periodos de onda 60 (a), 80 (b), 120 (c) y 160 (d).	63
Figura 28.	(a) Pérdida de humedad y (b) humedad relativa durante el secado de muestras deshidratadas con perfiles de calentamiento trapezoidales A y D	65
Figura 29.	(a) Pérdida de humedad (dX/dt) y (b) humedad absoluta (H) y teperatura del aire (Ta) durante el secado de muestras deshidratadas con perfiles de calentamiento trapezoidales A y D.	
Figura 30.	Comparación de la temperatura del aire de secado con la densidad real experimental y calculada con las ecuaciones 12, 51 y 52, (a) Ciclo descendente (D), periodo 60 min. b) Ciclo desscendente (D), periodo 160 min. c) Ciclo	
	ascendente (A), periodo 80 min. d) Ciclo ascendente (A), periodo 120 min	67
Figura 31.	Densidad real calculada con las ecuaciones 12, 51 y 52, (a) Ciclo descendente (D) periosdos 160 y 80 min. b) Ciclos ascendente (A) y descendente (D) del	
	periodo 120 min	68
Figura 32.	Comportamiento de densidad aparente durante el proceso de secado con perfiles de calentamiento en forma de onda trapezoidal ascendente (A) ó descendente (B) y con diferentes periodos de onda (60, 80,120 y 160)	69
Figura 33.	Comparación del comportamiento de densidad aparente durante el proceso de secado entre los ciclos de calentamiento en forma de onda trapezoidal ascendente (A) ó descendente (B)	70
Figura 34.	Comportamiento de la porosidad del ajo deshidratado con perfiles de calentamiento en forma de onda trapezoidal ascendente (A) ó descendente (D) y con diferentes periodos de onda a) 160 b) 120 c) 80 y d) 60	71
Figura 35.	Temperatura de transición vítrea del ajo deshidratado con perfiles de calentamiento Constante (C), en forma de onda trapezoidal ascendente (A) ó descendente (D) y con diferentes periodos de orda (160 y 60)	71
Figura 36.	Temperatura de superficie, temperatura interna, temperatura de transición vítrea y pérdida de humedad de muestras deshidratadas con perfiles de calentamiento trapezoidales A y D con diferentes periodos de onda 60 (a), 80 (b), 120 (c) y 160 (d)	71

Lista de tablas

Tabla I.	Métodos para la determinación experimental de la difusividad efectiva	13
Tabla II.	Principal organosulfurados en el ajo entero y machacado.	19
Tabla III.	Contenido de volátiles en dientes de ajo pelados secados a diferentes condiciones	
	de operación	20
Tabla IV.	Diseño experimental para el secado a temperatura cíclica	43
Tabla V.	Diseño experimental para el secado a temperatura constante	43
Tabla VI.	Coeficientes convectivos de transferencia de masa y calor para ajo	51
Tabla VII.	Coeficientes de la ecación 51 obtenidos para ρp , $\rho b v \varepsilon$ de muestras de ajo	
	deshidratado a 40,50 y 60°C	54
Tabla VIII.	Ecuaciones de para obtener V/V0 con los los datos de volumen del 2006 y 2007	
	objenidos con el método de dimensiones geométricas	58
Tabla IX.	Valores de r4 y Xc de la ecuación 35 para los datos del 2006 y 2007	59
Tabla X.	Valores Tg, Ts, Ti, Ta y t de cada programa de secado no isotérmico de muestras	
	hojuelas de ajo	73
	• •	

Lista de anexos

Anexo A.	Análisis de varianza de propiedades estructurales	86
Anexo B.	Pruebas previas al análisis de varianza	87
Anexo C.	Análisis de varianza de muestras deshidratadas con perfiles de calentamiento	
	cíclicos	88
Anexo D.	Cálculo de los coeficientes convectivos de transferencia de masa y calor	
Anexo E.	Productos de Investigación	

Nomenclatura

- C_p Capacidad calorífica (J/kg. K)
- D Difusividad efectiva (m²/s)
- D_{ab} Difusividad molecular (m²/s)
- E_a Energía de activación (kJ/(mol K))
- h_{H} Coeficiente de transferencia de calor externo (W/m² K)
- h_M Coeficiente de transferencia de masa externo (kg/m²s)
- k_a Conductividad térmica del aire (W/m²K)
- k_{G-T} Constante de Gordon-Taylor
- l espesor (m)
- m Masa (kg)
- m_{s-a} Masa de el sólido en el aire (kg)
- m_{s-li} Masa de el sólido en el líquido de inmersión (kg)
- P_1 Presión antes de V_A (kg/cm²)
- P₂ Presión después de V_A (kg/cm²)
- R Constante de los gases ideales (kJ/mol K)
- r parámetros ajustables
- T Temperatura (\mathfrak{C})
- t Tiempo (min)
- T_a Temperatura del aire de secado (°C)
- t_c Tiempo a temperatura constante (min)
- T_g Temperatura de transición vítrea (\mathfrak{C})
- T_i Temperatura en el interior del ajo (\mathfrak{C})
- T_{pro} Temperatura del aire de secado (K)
- t_Q Tiempo de calentamiento o enfriamiento (min)
- T_s Temperatura en la superficie del ajo (\mathfrak{C})
- V Volumen (m³)
- v velocidad del aire (m/s)
- W Fracción masa (Kg/Kg_{total})
- X Contenido de humedad (Kg_w/kg_{ss})

Letras griegas

- δ Colapso
- ρ Densidad (kg/m³)
- β Encogimiento de volumen
- ς Factor de corrección por volumen libre
- τ Periodo de onda (min)
- ε Porosidad
- μ Viscosidad (kg/m.s)
- v Volumen específico (m³/kg)
- \widehat{V}_{FH} Volumen libre por gramo de polímero
- \widehat{V}_i^* Volumen libre crítico específico del componente

Subscripts

- 0 Inicial
- a Aire
- A gas agregado
- ah aire húmedo

- b Aparente
- c Celda contenedora
- dw desplazamiento de agua (sólido en el líquido de inmersión)
- e Equilibrio
- exp Experimental
- li liquido de inmersión
- p Partícula
- s sólido seco
- th Teórico
- w agua

Grupos Dimensionales de Propiedades Físicas

 $Bi = \frac{h_H I}{K_s}$ Bi Número de Biot (calor) $\mathsf{Bi} = \frac{\mathsf{h}_{\mathsf{M}}.\mathsf{I}}{\mathsf{D}_{\mathsf{eff}}}$ Bi Número de Biot (masa) $Fo = \frac{D \cdot t}{{I_0}^2}$ Fo Número de Fourier $Nu = \frac{h_H \cdot I}{k_a}$ Nu Número de Nusselt $Pr = \frac{Cp_{ah}.\mu_a}{K_a}$ Pr Número de Prandalt $Re = \frac{l.v.\rho_a}{\mu_{ah}}$ Re Número de Reynolds $Sc = \frac{\mu_{ah}}{\rho_{ah}.D_{ab}}$ Sc Número de Schmidt $Sh = \frac{h_m \cdot I}{D_{ab}}$ Sh Número de Sherwood. $W = \frac{X_1 - X}{X_1 - X_0}$ W Contenido de humedad adimensional.

1. INTRODUCCIÓN

El proceso de secado es una operación unitaria que permite incrementar la vida útil y la estabilidad de los alimentos. Durante este proceso se producen mecanismos de transferencia de masa y calor acoplados. La migración del agua del interior (subsestructuras, micro-dominios y organelos) hacia la superficie expuesta de los alimentos está acompañada gradientes de humedad y estrés.

Estos gradientes producen cambios en las características originales del producto alimenticio, tal como: encogimiento, colapso, endurecimiento de superficie, agrietamiento y ruptura celular (Aguilera, 2003). La ruptura celular puede intensificar las reacciones enzimáticas y no enzimáticas, formando compuestos volátiles no deseados causando la pérdida de sustancias bio-activas importantes. La industria farmacéutica y biotecnológica ha mostrado interés en preservar las moléculas bioactivas dentro de alimentos, deshidratados para mayor estabilidad (Aguilera, Chiralt y Fito, 2003).

El ajo es un material biológico altamente sensible a cambios de temperatura, la estructura celular es fragmentada durante el proceso de secado y las enzimas vacuolares son liberadas. Estas encimas reaccionan con las sustancias contenidas en el citoplasma formando compuestos volátiles y bio-activos (Lawson, 1993; Amagase y col., 2001; Jones y col., 2004; Amagase 2006; Lanzoti, 2006). Los cambios en las características internas del ajo pueden afectar a las diferentes variables estructurales del material.

La calidad del ajo puede ser evaluada monitoreando durante el proceso de secado la densidad real (ρ_p), densidad aparente (ρ_b), porosidad (ϵ), encogimiento (β) y temperatura de transición vítrea (T_g). Esta última recientemente se introdujo como variable respuesta de la calidad del producto final (Roos, 1987; Telis y Sobral, 2002, Sablani y col., 2007). Las variables anteriores son consideradas como indicadoras de la degradación estructural de un producto alimento que fue sometido a ciertas condiciones de temperatura.

El comportamiento de las variables estructurales ha sido estudiado en muestras que fueron deshidratadas a temperatura constante, sin embargo, es necesario estudiar

el comportamiento de éstas en muestras deshidratadas con perfiles de calentamiento no-isotérmicos. Por lo tanto, Estudiar el efecto del secado no-isotérmico (variación de la temperatura en forma de una onda trapezoidal a diferentes periodos de onda: 60, 80, 120 y 160 min) e isotérmico (a 40, 50 y 60°C) e n el deterioro de la calidad del ajo en tiempo real a través las diferentes variables respuesta: densidad real (ρ_p), densidad aparente (ρ_b), porosidad (ϵ), temperatura de transición vítrea (T_g), temperatura de la superficie (T_s) de hojuelas de ajo, temperatura en el interior (T_i) de hojuelas de ajo, contenido de humedad (X), difusividad efectiva (D) y agrietamiento del ajo rebanado con espesor inicial de 2 ± 0.25 mm; para obtener ecuaciones que describan el comportamiento de las variables respuestas y predecir el momento adecuado para detener el proceso de secado.

En el capítulo dos se describen los fundamentos y las bases que soportan el estudio realizado. En el capítulo tres se señalan los materiales y los métodos a seguir. En éste se describen los programas de secado con perfiles en forma de onda trapezoidal y los niveles de temperatura probados en el secado isotérmico. Se describe como se obtuvieron las diferentes variables respuesta.

En el capítulo cuatro se presentan los resultados obtenidos de la experimentación. Se encontró que ρ_b , ρ_p , ϵ , y D son función de la temperatura del aire de secado, contenido de humedad y de la fase en la que se encuentra el material. Se ubicó un punto crítico en la intersección de T_i, T_s, y T_g; este punto se identificó como un cambio de fase de segundo orden. Este cambio de fase de segundo orden fue asociado al cambio de pendiente en la tendencia de las propiedades estructurales (ρ_b , ρ_p y ϵ). Se ajustaron los datos experimentales de ρ_b , ρ_p y ϵ a una ecuación no lineal de tres términos exponenciales con una R² > 0.85. Se obtuvo un modelo semi-empírico para predecir el cambio en el valor numérico de la densidad real durante el proceso de secado. Se obtuvo una R² = 96.34 en la comparación con los datos experimentales.

En el capítulo cinco se presentan las conclusiones y recomendaciones que surgieron del análisis y la discusión de los resultados obtenidos.

1.1. Problemática.

En el proceso de secado de ajo se presentan los fenómenos de transferencia de masa y calor simultáneamente, los cuales, necesitan simularse para poder

rediseñar el proceso de secado con nuevas condiciones de operación que permitan disminuir el deterioro de la calidad del producto.

Algunos de los términos cinéticos que pueden ser incluidos en los modelos de transferencia son la densidad real (ρ_p), densidad aparente (ρ_b), porosidad (ϵ) y encogimiento (β). No obstante, existe incertidumbre en el comportamiento de éstas durante el proceso de secado. Además, no se ha esclarecido en qué forma afecta el historial térmico del material a las variables estructurales. También, la mayoría de las ecuaciones que predicen su comportamiento están en función del contenido de humedad (X) y raramente se expresan en función de la temperatura del aire de secado (T_a).

Por lo tanto, es necesario comprender y relacionar el efecto de las condiciones de temperaturas cíclicas o constantes con el proceso de deterioro de la calidad (expresada en variables estructurales) para poder establecer ecuaciones que permitan predecir los términos cinéticos y puedan ser utilizadas en los modelos de transferencia.

Durante el secado ocurren diferentes reacciones en materiales biológicos termolábiles, incluyendo reacciones químicas, colapso celular (δ), transiciones de fase de primer y segundo orden (Aguilera y Stanley, 1999). Como resultado, pueden ocurrir cambios en propiedades estructurales (Roos, 1987; Sablani y col., 2007; Sablani, Kasapis y Rahman, 2007; Kasapis y col., 2007). Los cambios de fase de segundo orden, dependen del historial térmico del material (Martínez-Navarrete, Chiralt y Fito, 1999), sin embargo, no ha sido claramente establecido si los cambios en la densidad aparente y densidad real están relacionados, o no, con los estos cambios de fase.

1.2. Justificación.

La comprensión del efecto de las condiciones de secado no-isotérmico e isotérmico en la calidad de los alimentos deshidratados es importante para seleccionar adecuadamente los cambios de la temperatura durante el proceso.

La evaluación adecuada de la densidad real (ρ_p), densidad aparente (ρ_b) y temperatura de transición vítrea (T_g) es necesaria para: comprender el deterioro de la calidad del ajo durante el proceso de secado, introducir valores confiables en los modelos matemáticos, comprender la relación proceso de secado-deterioro de la

calidad de alimentos, y con ello, seleccionar adecuadamente las condiciones de operación.

1.3. Objetivos. Objetivo general.

Estudiar el efecto del secado no-isotérmico (variación de la temperatura en forma de una onda trapezoidal a diferentes periodos de onda: 60, 80, 120 y 160 min) e isotérmico (a 40, 50 y 60°C) en el deterioro de la calidad del ajo en tiempo real a través las diferentes variables respuesta: densidad real (ρ_p), densidad aparente (ρ_b), porosidad (ϵ), temperatura de transición vítrea (T_g), temperatura de la superficie (T_s) de hojuelas de ajo, temperatura en el interior (T_i) de hojuelas de ajo, contenido de humedad (X), difusividad efectiva (D) y agrietamiento del ajo rebanado con espesor inicial de 2 ± 0.25 mm; para obtener ecuaciones que describan el comportamiento de las variables respuestas y predecir el momento adecuado para detener el proceso de secado.

Objetivos específicos.

- Estudiar las tendencias de ρ_p, ρ_b y ε en relación con el contenido de humedad, la temperatura de secado (cíclica o constante), T_i y T_s para encontrar ecuaciones que describan y expliquen su comportamiento.
- Evaluar el comportamiento de D en función del contenido de humedad, temperatura de secado (cíclico o constante) y cambio de fase de segundo orden.
- Estudiar el efecto del secado por convección con temperatura de aire (cíclica o constante) en la estructura celular del ajo deshidratado.
- Evaluar el comportamiento de la T_g con respecto a la temperatura de secado (cíclica o constante) y contenido de humedad mediante la comparación de los resultados obtenidos a partir de la ecuación de Gordon y Taylor (G-T).
- Identificar los cambios de fase de segundo orden del ajo durante el proceso de secado (cíclico o constante), mediante las intersecciones entre T_s, T_i y T_g con respecto al tiempo de secado.
- Identificar si existe relación entre los cambios de fase de segundo orden y los cambios en las propiedades estructurales (ρ_p, ρ_b y ε)

1.4. Hipótesis.

Hipótesis general.

Las mediciones de densidad real (ρ_p), densidad aparente (ρ_b), porosidad (ϵ), temperatura de transición vítrea (T_g), temperatura en la superficie (T_s) y en el interior (T_i) de hojuelas de ajo, contenido de humedad (X), difusividad efectiva (D) y agrietamiento durante el secado isotérmico (40, 50 y 60°C) y no-isotérmico (con perfiles de calentamiento en forma de onda trapezoidal con diferentes periodos de onda: 60, 80, 120 y 160 min) permiten evaluar el deterioro de la calidad del ajo y obtener ecuaciones que describan el cambio en las propiedades estructurales durante el proceso de secado.

Hipótesis específicas.

- T_i, T_s, X y T_{secado} permiten obtener ecuaciones que describen y explican los cambios en las tendencias de ρ_p, ρ_b y ε del ajo.
- D es función del contenido de humedad así como del historial térmico del material y depende de la estructura interna del ajo.
- La temperatura de transición vítrea y su relación con temperatura de superficie e interna de las hojuelas de ajo indican adecuadamente el momento en el cual puede ser detenido el secado.
- En el secado isotérmico el agrietamiento de las hojuelas de ajo es menor a menor temperatura de secado.
- Es posible identificar los cambios de fase del ajo durante el proceso de secado (cíclico o constante), mediante las intersecciones entre T_s, T_i y T_g con respecto al tiempo de secado.

2. ANTECEDENTES Y MARCO TEÓRICO

El objetivo de cualquier proceso de secado es controlar el contenido de humedad de los alimentos a la salida, minimizar la degradación por reacciones químicas, mantener la estructura y textura, obtener el color deseado, controlar la densidad y porosidad del producto, además desarrollar un proceso de secado flexible que pueda ofrecer diferentes estructuras para diversos usos (Krokida y Maroulis, 2000). Así que, el mismo material fresco puede terminar siendo un producto completamente diferente, dependiendo del método de secado y condiciones aplicadas (Krokida y Maroulis, 2000).

2.1. Secado por convección.

Durante el proceso de secado por convección ocurren mecanismos acoplados de transferencia de masa y calor. Para mayor estabilidad del alimento, el contenido de agua debe disminuir hasta alcanzar un X_{bs.} menor de 0.12 kg_W/kg_{ss}, donde los microorganismos que provocan la descomposición no pueden crecer y multiplicarse por la ausencia de agua. Sin embargo; la migración de agua y de otros componentes proveniente del interior del material (sub- estructuras, micro-dominios y organélos) hacia la superficie expuesta ocurre por efecto de *las condiciones de secado* causando deterioro en el material alimenticio a nivel macroscópico y microscópico (Aguilera Stanley 1999).

2.1.1. Condiciones de secado

Dentro de las variables que se pueden controlar en la deshidratación por convección son la velocidad, la humedad relativa y la temperatura del aire de secado siendo esta última la de mayor influencia durante todo el proceso.

2.1.1.1. Humedad relativa del aire.

La humedad relativa del aire indica la cantidad de saturación de una mezcla de aire-vapor de agua (Fuentes, Silva y Montes, 1996). Un aire completamente saturado es incapaz de eliminar más humedad de los alimentos. Con el aumento de temperatura, la humedad relativa disminuye; por lo tanto, la capacidad de eliminar humedad es mayor obteniendo así un menor tiempo de procesamiento.

2.1.1.2. Velocidad del aire.

En la primera etapa del proceso de secado se ha observado una influencia significativa de la velocidad del aire ya que intensifica la transferencia de calor y masa (Piotrowski y Lenart, 1998; Velić y col., 2004). Al inicio del secado se encuentra la mayor cantidad de agua dentro del material para ser removida. Al hacer pasar rápidamente aire (1.5 - 4 m/s), el agua es eliminada velozmente. En la segunda etapa

del secado la humedad del sólido disminuye considerablemente y la rapidez con que la humedad pueda migrar del interior del alimento hacia la superficie es muy pequeña (Velić y col., 2004). Aunque la velocidad del aire sea grande no se puede eliminar más agua que la que se encuentre en la superficie.

2.1.1.3. Temperatura del aire durante el secado.

Se ha demostrado que la variable que tiene mayor influencia en la calidad del producto alimenticio es la temperatura del aire de secado. Altas temperaturas y tiempos largos de secado pueden causar serios daños en el sabor, color, nutrientes y pueden reducir la densidad aparente y la capacidad de rehidratación de productos secos (Pezzutti y Crapiste 1997; Lin, Durance y Scaman, 1998; Sharma y Prasad, 2001, Krokida y Philippopoulos, 2005). Sacilik, K. y Unal, G., 2005, encontraron que las características de las rebanadas de ajo (color, difusividad efectiva, rehidratación) deshidratadas son afectadas por la temperatura del aire de secado y el espesor de las rebanadas. Sin embargo, gracias al desarrollo de controladores avanzados y técnicas de control se puede contribuir en la disminución del deterioro de la calidad durante y al final del proceso de secado de agroalimentos.

Temperatura isotérmica del aire durante el secado

El secado convectivo convencional mantiene la temperatura del aire constante durante todo el proceso. Estudios realizados con diferentes alimentos muestran que la pérdida de agua del alimento aumenta con el incremento de la temperatura de secado (Pezzutti y Capriste, 1997) (ajo); Sharma y Prasad, 2001 (ajo); Rahman y col., 2002 (manzanas); Doymaz y Pala, 2002).

Las condiciones externas de secado son importantes durante la primera etapa del proceso cuando la superficie está húmeda y el agua del material es removida fácil y rápidamente (Mujumdar, 2006). Posteriormente, el gradiente de humedad entre la superficie y el interior del sólido se incrementa, esto puede generar condiciones de deterioro de calidad como deformaciones del material, agrietamiento y colapso de células, consecuentemente mayor pérdida de sustancias volátiles bio-activas. Al mismo tiempo, la temperatura alta pude desnaturalizar proteínas y acelerar o retardar reacciones entre componentes. No obstante, al incrementar la temperatura del aire de secado se reducen el costo energético.

Figura 1. Ajo deshidratado por convección mostrando la variación de X/Xo con respecto a la temperatura de secado (a), velocidad del aire (b), humedad relativa (c) y espesor (d) (Pezzutti y Crapiste, 1997)

Temperatura de aire no-isotérmica.

Gracias al avance tecnológico en controladores y en las técnicas de control de procesos es posible incorporar estrategias de control de calidad (Chua y col., 2002). El control de la temperatura de secado permite establecer perfiles de calentamiento en forma de onda sinusoidal, onda cuadrada o función caja, rampa escalonada ascendente y descendente, onda diente de sierra, entre otros (Mujumdar y col., 2000; Chua y col., 2002; López-Toledo, 2008).

Figura 2. Perfil de calentamiento del aire en forma de onda cuadrada.

En el perfil de calentamiento en forma de onda cuadrada y sinusoidal se fijan los límites superior e inferior de temperatura del aire de secado, siendo T_m , la temperatura media de éstos y ΔT , el incremento o decremento de la temperatura con respecto a T_m . El periodo (τ) también puede variarse de acuerdo al material a deshidratar.

Figura 3. Perfil de calentamiento del aire en forma de onda sinusoidal.

El secado con condiciones isotérmicas ocasiona un deterioro mayor en la calidad del producto y un costo más elevado que el secado con condiciones variables (Mujumdar y col., 2000; Chua y col., 2002). Chua y col., 2002 establecieron que se obtiene un porcentaje menor de retención de acido ascórbico en cubos de papas (15 x 30 x 30 mm) deshidratadas con los perfiles de diente de sierra que con los perfiles de onda sinusoidal, debido a que la temperatura mínima en el perfil de dientes de sierra fue igual a la T_m de los perfiles sinusoidales. Concluyeron que la parte de enfriamiento del ciclo permite reducir la temperatura en el interior del material. Reportan que al final del proceso la temperatura en el interior del material es igual a T_m.

En cuanto a la degradación de color de papas, Chua y col., (2002), muestran que se obtiene menor porcentaje de oscurecimiento con perfiles de calentamiento en forma de ondas cuadradas que con ondas sinusoidales y ondas en forma de diente de sierra. Además, con perfiles de calentamiento de ondas cuadradas reportaron que una

disminución en T_m se obtiene mayor porcentaje de reducción de oscurecimiento no enzimático.

Sosa (2004) obtuvo mejores resultados de calidad con los ciclos de temperatura en forma de rampa escalonada ascendente, que con el secado a temperatura constante. Méndez-Lagunas y Castaigne (2008) encontraron que utilizando perfiles de calentamiento en forma de onda trapezoidal, con límite inferior de 40°C y límite superior de 60°C, la capacidad de for mación de alicina es mayor que a temperatura constante. Por lo tanto, los ciclos con condiciones variables ofrecen una alternativa para reducir el costo energético y mejorar la calidad del producto deshidratado, en comparación con los resultados obtenidos con condiciones constantes de temperatura. Y dentro de los perfiles cíclicos, el perfil de onda cuadrada ha presentado mejores resultados (calidad del producto).

Debido a las limitaciones del equipo utilizado en el presente trabajo no fue posible reproducir una onda cuadrada a la perfección, por lo tanto, en el presente trabajo se abordará únicamente un perfil de calentamiento en forma de trapezoidal, el cual considera un valor único de T_m pero diferentes periodos de onda. Dicha función periódica T(t) puede ser expresada en componentes armónicos. Donde los limites de T(t), están definidos por la temperatura máxima (T_a) y mínima (T_b).

Figura 4. Perfil de calentamiento del aire en forma de onda trapezoidal.

2.2. Transferencia de masa y calor en el secado.

El proceso de transferencia de masa y calor durante el secado de ajo es complejo, ya que ambos procesos están ligados entre sí. Un gradiente de temperatura afecta al gradiente de masa (agua) dentro del material y un gradiente de agua puede afectar la transferencia de calor en el material (Figura 5). El remover la humedad del

Un gradiente de temperatura puede causar transferencia de masa (efecto Soret). Un gradiente de concentración de masa puede causar un flujo de calor (efecto Dufort). Ambos efectos son despreciables, en un medio poroso, en comparación con efectos causados por consideraciones de equilibrio termodinámico (Witaker, 1988).

Figura 5. Transporte de masa y calor durante el proceso de secado de un material alimenticio (Aguilera, 2003).

El secado de un mismo tipo de material bajo diferentes condiciones puede dar lugar a varios mecanismos de secado, por lo que gran cantidad de estudios están encaminados a incluir las variantes que se presentan en el proceso de secado tales como la influencia del tamaño y forma del material, el diámetro de poro, la heterogeneidad del medio y la variación de las dimensiones debido a la pérdida de humedad (Rodríguez, 1998).

2.2.1. Transferencia de masa

La *transferencia de masa* durante el proceso de secado, principalmente agua, se origina dentro del material por una combinación de distintos mecanismos de transporte como son:

Fase liquida.

- Difusión líquida por gradientes de concentración (si la temperatura del solido húmedo se encuentre debajo de la temperatura de ebullición del liquido)
- Flujo capilar debido a gradientes presión de succión capilar
- Flujo viscoso consecuencia de gradientes totales de presión externos o altas temperaturas
- Difusión superficial.

Fase vapor.

- Difusión de vapor causada por gradientes de presiones de vapor, debido a que la velocidad de evaporación interna excede la velocidad de transporte de vapor atreves del solido a los alrededores
- Difusión tipo Knudsen (si el secado es a bajas temperaturas y a bajas presiones, ej. liofilización)
- Efusión
- Flujo hidrodinámico (difusión tipo Stefan y difusión tipo Poiseville)

La remoción de la humedad interna contenida en el alimento se considera una función de la naturaleza física del sólido, temperatura y contenido de humedad. Además, el mecanismo de transferencia de masa puede cambiar durante el secado (Mujumdar, 2006). Biológicamente, el agua migra del protoplasma a través de la membrana celular a las paredes celulares y a través de los poros del tejido (Aguilera y Stanley, 1999). La membrana semipermeable de la célula del ajo es altamente selectiva y solo permite el paso de ciertas sustancias y/o iones. La teoría del lípido-filtro menciona que la membrana celular está constituida de lípidos y proteínas generando un patrón de poros hidrofilacios y lipofílicos, asumiendo que se regula el paso del agua y de ciertas partículas, sin embargo no es explicada a profundidad (Mohr y Schopfer, 1995).

La transferencia de humedad en un medio heterogéneo puede ser analizada usando la ecuación de Fick para materiales homogéneos, en la cual la heterogeneidad del material es compensada con el uso de una difusividad efectiva.

2.2.2. Difusividad efectiva.

No existe un método estándar para determinar la difusividad experimentalmente, aunque generalmente suele utilizarse uno de los siguientes métodos mostrados en la tabla l:

Métodos para la medición experimental de la	Referencia del método
difusividad de la humedad.	
Cinética de sorción	Crank y Park (1968)
Método de permeación	Crank y Park (1968)
Curvas de concentración-distancia	Naesens, Bresseleers y Tobback (1981);
	Hendrickx, M., Van den Abeele, C., Engels, C., y
	(1986); Gros, J.B. y Ruegg, M., (1987).
Otros métodos	
Método radio trazador	Crank y Park (1968)
Resonancia Magnética Nuclear (NMR) Resonancia Magnética Spin (ESR)	Crank y Park (1968); Eccles, Callaghan y Jenner (1988);
	Crank y Park (1968); Windle, (1985)
Técnica de secado	
Método simplificado	
Régimen Regular	Moyne, Roques, and Wolf (1987);
Método de optimización (solución numérica- análisis de regresión)	Schoeber and Thijssen, (1977).

Tabla I. Métodos para la determinación experimental de la difusividad efectiva.

Fuente: Marinos-Kouris y Maroulis (2006)

Análisis de cinéticas de deshidratación:

La determinación de la difusividad efectiva puede ser calculada a partir de los datos de secado del material alimenticio. La difusividad a partir de las cinéticas de secado puede ser calculada mediante tres métodos: a partir de las pendientes de las curvas de secado (Perry y Green, 2001), reduciendo la diferencia entre los valores experimentales y los calculados mediante un método de optimización o mediante el método del régimen regular (Mittal, 1999).

El método de las pendientes ha sido comparado con el método de optimización (Kataranos, Villalobos y Saravacos, 1990) concluyendo que los dos métodos dan resultados similares para materiales de baja porosidad donde predomina la difusión líquida. La solución de la ecuación de Fick puede ser utilizada en la determinación de la difusividad efectiva con el método de las pendientes. Éste consiste en dividir la velocidad de secado experimental a diferentes contenidos de humedad entre una velocidad teórica (Perry y Green, 2001).

$$D = \frac{\left(\frac{dW}{dt}\right)_{exp}}{\left(\frac{dW}{dFo}\right)} \cdot I_0^2$$
(1)

Donde el número de Fourier esta dado por:

$$Fo = \frac{D \cdot t}{{I_0}^2}$$
(2)

Por lo tanto, considerando a un placa plana con una concentración inicial uniforme Co al inicio (t=0), que es expuesta a un flujo de aire con una concentración C1 (t=t) y una difusividad constante,

C=X₀ t=0
$$0 \le x \le 21$$
 $W = \frac{X_1 - X_0}{X_1 - X_0} = 1$
C=X₁ t=t $x = 0$ $W = \frac{X_1 - X_1}{X_1 - X_0} = 0$
C=X₁ t=t $x = 21$ $W = \frac{X_1 - X_1}{X_1 - X_0} = 0$

Se obtiene la siguiente solución de la ecuación de Fick.

$$W = \frac{X_1 - X}{X_1 - X_0} = \frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} e^{-(2n+1)^2 D \cdot t \left(\frac{\pi}{2I}\right)^2}$$
(3)

Si se considera solamente el primer término de la serie, la ecuación de Fick se reduce a:

$$W = \frac{X_1 - X}{X_1 - X_0} = \frac{8}{\pi^2} e^{-D \cdot t \left(\frac{\pi}{2I}\right)^2}$$
(4)

La difusividad, por lo tanto, está dada por:

$$D = \frac{\left(\frac{X_{1} - X}{X_{1} - X_{0}}\right)_{exp}}{\left(-8e^{-Fo.\pi^{2}}\right)_{teórica}} \cdot I_{0}^{2}$$
(5)

Donde Fo es,

$$Fo = -\left[In\left(\frac{W \cdot \pi^2}{8}\right)\right] \frac{1}{\pi^2}$$
(6)

Factores que afectan al valor de D_e.

Los valores de difusividad generalmente no son constantes porque son afectados por la temperatura, el contenido de humedad, la geometría de la muestra y su composición. La dependencia de la difusividad con la temperatura se describe generalmente mediante la ecuación de Arrhenius.

$$D_{e} = D_{0} \exp\left(-\frac{E_{a}}{R \cdot T}\right)$$
(7)

Donde D_0 es el factor de Arrhenius en m²/s, E_a es la energía de activación en kJ/(mol K), y T la temperatura absoluta. La energía de activación puede obtenerse representando gráficamente ln(D_e) con respecto a 1/T. De la pendiente se obtiene – E_a/R y de la ordenada al origen se deduce ln(D_0) que depende de la estructura del alimento y por lo tanto puede ser considerado un parámetro estructural (Martínez-Navarrete y col. 1999).

La tendencia a aumentar de la difusividad con el contenido de humedad de los alimentos se ha demostrado bastamente. Principalmente en el intervalo de bajos contenidos de humedad (menores de $1 \text{kg}_{agua}/\text{kg}_{ss}$). Dicha variación puede obtenerse gráficamente representando ln(X) con respecto al contenido de humedad. La pendiente obtenida es D·l²/ π , no obstante, dicha representación esa sujeta a diferentes consideraciones tomadas para la solución de la ecuación de Fick.

Correlación de los datos de difusión usando la teoría de volumen libre (FVT): A partir de la teoría de volumen libre (Vrentas y Duda, 1978) se ha propuesto la siguiente expresión del coeficiente de difusión para una solución de un polímero mostrando dependencia de concentración y temperatura.

$$D_{e} = D_{0} \exp\left(-\frac{E_{a}}{R \cdot T}\right) \cdot \exp\left(\frac{\varsigma\left(W_{1}\hat{V}_{1} + W_{2}\hat{V}_{2}\xi\right)}{\hat{V}_{FH}}\right)$$
(8)

Donde ς es un factor de corrección por el volumen libre, W es la fracción masa del componente i, \hat{V}_i^* es el volumen libre crítico específico del componente i requerido para un cambio en la difusión. ξ es el radio crítico molar y \hat{V}_{FH} es el volumen libre por gramo de polímero.

2.2.3. Transferencia de calor.

La *transferencia de calor* se presenta por conducción, convección, radiación o como la combinación de estos efectos.

El secado convectivo es considerado como un proceso simultaneo de transferencia de masa y calor, donde el agua es transferida por difusión dentro del

material a la interface alimento-aire, y de la interface al aire por un proceso de convección (Hernández, Pavón y García, 2000).

Srikiatden y Roberts (2008) estudiaron la transferencia de masa y calor en zanahorias y consideraron que: la transferencia de humedad esta internamente controlada, el transporte de masa y calor ocurre en dirección radial, la difusividad efectiva fue determinada experimentalmente considerando la transferencia de liquido y vapor, la difusividad efectiva no depende de la concentración pero si de la temperatura, la temperatura y contenido de humedad inicial es uniforme, la resistencia externa de transferencia de masa y calor es despreciable y el efecto de encogimiento es despreciable.

Aversa y colaboradores (2007) estudiaron la transferencia de masa y calor en zanahoria. Consideraron que la transferencia de calor en el producto es por conducción (Ecuación de Fourier). Al considerar condiciones variables de temperatura en la frontera, la solución de las ecuaciones de transporte se vuelve más complicada. Algunos métodos utilizados para modelos no tan complejos han sido muy recurridos.

2.3. Coeficientes convectivos de masa y calor

Todos los aspectos micro estructurales del alimento están inmersos en los coeficientes de transferencia de masa y calor (Aguilera y Stanley, 1992). La transferencia de masa y calor durante el proceso de secado está asociada al transporte de entes de la superficie sólida a un fluido externo adyacente. Los coeficientes convectivos están relacionados con las propiedades del fluido y la geometría del sistema.

Generalmente los coeficientes convectivos se correlacionan mediante ecuaciones de la forma:

Transferencia de calor:

$$Nu_x = f(Re,Sc)$$

Transferencia de masa:

$$Sh_x = f(x^*, Re, Sc)$$

Considerando el movimiento del aire, geometría del sistema y la temperatura isotérmica de secado se pueden obtener diferentes correlaciones para determinar los

coeficientes convectivos. Para el caso de una placa plana sumergida en un flujo laminar paralelo a la superficie de la placa se han obtenido:

Para calor

Nu =
$$\frac{h_{\rm H} \cdot l}{k_{\rm a}}$$
 = 0.664 Re^{1/2} · Pr^{1/3} Pr≥0.6 (9)

Análogamente (masa)

Sh =
$$\frac{h_m \cdot I}{D_{ab}}$$
 = 0.664 Re^{1/2} · Sc^{1/3} Sc≥0.6 (10)

Con la minimización cuidadosa de las perturbaciones externas es posible mantener el flujo laminar para números de Reynolds tan grandes como 50,000 (Mott y Brito, 2006). Y en el caso particular del túnel de secado utilizado en la experimentación del presente trabajo el Re \cong 24,000

2.4. Características generales del ajo.

El ajo (*Allium sativum*, L.) es una planta compuesta de bulbos individuales comúnmente llamados dientes. Ha sido usado como planta medicinal y culinaria desde hace 4000 años aproximadamente (Bhagyalakshmi y col., 2005). El primer registro del uso de esta planta fue el papiro de Eber (1550 a.C.), un papiro médico egipcio que reporta varias formulas terapéuticas basadas en ajo y cebollas usadas como remedio para enfermedades tales como: problemas del corazón, dolor de cabeza, mordeduras y tumores (Block, 1985).

Durante la primera y la segunda guerra mundial el ajo fue utilizado como antiséptico para desinfectar heridas abiertas y prevenir la gangrena, en 1950 el Dr. Albert Schweitzer utilizó al ajo como tratamiento para el cólera, tifo y disentería (Bhagyalakshmi y col. 2005). El auge por preservar las sustancias bio-activas del ajo aún después del proceso de secado ha motivado a investigadores a enfocarse en tratar de minimizar el deterioro de la calidad (Aguilera, Chiralt and Fito, 2003).

Figura 6.Composición celular del ajo (Modificado de Jones y col., 2004; Aguilera y Stanley, 1999)

Generalmente en cada 100 g de ajo fresco, hay 23 g de **carbohidratos** y 4.4 gramos de **proteínas**, se encuentran altos niveles de fosforo (44 mg) calcio (5mg) y hierro (0.4 mg), vitaminas como riboflavina (0.03 mg), tiamina (0.24 mg), acido nicotínico (0.9 mg) y vitamina C (Bhagyalakshmi y col. 2005). Además, contiene minerales tales como el selenio (0.01-0.2 mg/g) y el germanio (0.004 mg/g) (Fenwick y Hanley, 1985).

Dentro de los **carbohidratos** del ajo reportados se encuentran: glucosa (1.2 %), fructosa (1.4 %) y sacarosa (7 %), se ha reportado que el ajo contiene trisacáridos tales como: 1- β -fructofuranosilsacarosa (1-kestosa) y 6- β -fructofuranosilsacarosa (neokestosa), éstos pueden influir en el oscurecimiento del material cuando es sometido a un proceso de deshidratación, la fructosa y la glucosa mediante las reacciones de maillard y la sacarosa por caramelización.

Dentro de las **proteínas** del ajo se encuentran aminoácidos cisteínas (no volátiles), localizados en el citoplasma, tales como: S-alkilcisteína sulfóxidos y γ -glutamil-S-alkilcisteínas (Tabla II). Cuando el ajo es sometido a un proceso de cortado o machacado, generalmente la enzima liberada de la vacuola (alinasa) actúa rápidamente con los S-alkilcisteína sulfóxidos (1a-1d) para formar ácidos sulfénicos (2a-2d) que son productos intermedios altamente reactivos que al condensarse producen tiosulfinatos volátiles como DAS (Dialil sulfidos), DADS (dialil disulfidos) y dialil trisulfidos(3a-3q, Fig 1)(Amagase y col., 2001; Lawson, 1993; Lanzotti, 2006,

Componente	Ajo entero	Ajo machacado
	(mg/g)	(mg/g)
S- Alkil cisteína sulfóxido:		
Alilcisteínas sulfóxido (alliina) (1a)	7-14	nd
S-metil cisteína sulfóxido (metiina) (1b)	0.5-2	nd
trans-S-1-propenil cisteína sulfóxido (isoaliina) (1c)	0.1-2	nd
<u>γ-glutamil-S-alkil cisteínas:</u>		
γ-glutamil-S-trans-1-propenilcisteína (1d)	3.9	3.9
γ-glutamil-S-alilcisteína (1e)	2.6	2.6
γ-glutamil-S-metilcisteína (1f)	0.1-0.4	0.1-0.4
Alkil alkanotiosulfinatos:		
Alil 2-propenotiosulfinato (alicina) (3a)	nd	2.5-4.5
Alil metil tiosulfinato (2 isómeros) (3c, 3d)	nd	0.3-1.2
Alil trans-1-propenil tiosulfinatos (2 isómeros) (3e,3f)	nd	0.05-1.0
Metil trans-1-propenil tiosulfinatos (2 isómeros) (3g,3h)	nd	0.02-0.2
Metil metano tiosulfinato (3i)	nd	0.05-0.15

Tabla II. Principal organosulfurados en el ajo entero y machacado.

Fuente: Lawson (1993)

Durante el almacenamiento de bulbos de ajo a temperaturas bajas (refrigeración) la aliína es acumulada naturalmente (Amagase y col., 2001).

Figura 7.Biosíntesis de precursores del ajo a tiosulfinatos.

En estudios realizados de deshidratación de ajo a temperatura constante (50, 60 y 70° C) se menciona que los compuestos volátil es formados durante el machacado o rebanado del ajo son afectados por el secado sin importar sí la temperatura del aire es alta o baja (Prachayawarakorn y col., 2006), en la tabla III se muestran las cantidades de volátiles presentes en el ajo fresco y ajo deshidratado a diferentes temperaturas.

condiciones de operación				
Temperatura (℃)	Velocidad del aire de		Volátiles mg / g _{ss}	
	secado	Antes del	Después	% de
	(m/s)	secado	del secado	perdida
50	0.7	10.8	2.7	75
	1.7	7.2	1.5	79
60	0.7	9.6	3.3	65
	1.7	10.7	3.4	68
70	0.7	9.6	2.8	71
	1.7	10.6	3.2	70

Tabla III. Contenido de volátiles en dientes de ajo pelados secados a diferentes condiciones de operación

Fuente: (Prachayawarakorn y col., 2006)

Aproximadamente el 71% de los compuestos volátiles se pierden durante el proceso de secado.

2.5. Agrietamiento y micro estructura celular

El medio donde toman lugar las actividades fisiológicas de una célula vegetal viva es el citoplasma (protoplasma), un semi líquido-sólido o gel. En la mayor parte de los alimentos, los componentes tales como el almidón, proteínas y la mayoría de los lípidos se encuentran contenidos en el citoplasma. Las vacuolas contienen cantidades considerables de azucares y sales en solución que explican en gran medida el potencial osmótico. El citoplasma se encuentra rodeado de una membrana semipermeable que regula el movimiento del agua y solutos entre las células. Esta fuerte pared celular que limita la expansión del citoplasma es la causante de generar una presión intracelular llamada presión de turgor (Aguilera y Stanley, 1999).

El parénquima del ajo está formado por células vivas que forman una pared pecto celulósica delgada y permeable. La membrana celular permite el paso de algunas moléculas pero restringe el paso de moléculas grandes como azucares, las cuales producen el fenómeno de presión de turgencia (Aguilera y Stanley, 1999).

La **presión de turgencia** es la fuerza ejercida hacia afuera de la pared celular (por el agua y demás componentes contenidos en la célula). Esta fuerza proporciona rigidez a las plantas y puede ayudar a mantenerlas erectas. Este fenómeno puede alcanzar de 6 a 7 atm de presión interna. La **plasmósis** es el fenómeno inverso a la turgencia. Las células al perder agua se contraen, separándose el protoplasto de la pared celular.

Durante el proceso de secado se pierde el turgor de las células debido a la evaporación del agua. Aguilera y Stanley (1999) mencionan que esta evaporación está relacionada con la micro estructura del tejido de la superficie del material.

El agrietamiento de la superficie de alimentos es un fenómeno que puede ocurrir durante el secado. Éste tiene lugar cuando el encogimiento no es uniforme durante el proceso originando un estrés desbalanceado y fallas en el material (Sereno y Mayor, 2004). La formación de grietas es un fenómeno complejo influenciado por el calentamiento, transferencia de humedad y demás condiciones de operación (Liu y col., 1997) y las características celulares del material.

Figura 8. Foto micrográfica de gránulos de almidón de castaña deshidratada (Attanasio, 2004)

Dentro del proceso de secado los poros formados y las grietas que se generan reflejan un deterioro en la calidad de los alimentos. Estas grietas generadas pueden observarse mediante una micrografía electrónica.

Figura 9.Foto micrográfica de ajo(a) fresco y (b) deshidratado por liofilización a -25°C (Sablani y col., 2007)

Attanasio y colaboradores (2004) observaron que la estructura de la nuez deshidratada por convección a 40 \degree se daño en menor grado comparada con la deshidratada a 60 \degree . Observaron que existe un agri etamiento en los gránulos de almidón de la nuez, señal de que la estructura es afectada por la temperatura de secado. Rahman y colaboradores (2002) mencionan que las grietas formadas durante el secado son originadas por la pérdida de agua durante el secado. Sablani y colaboradores (2007) deshidrataron ajo por liofilización a diferentes temperaturas de plato y encontraron una mayor porosidad y agrietamiento en muestras deshidratadas a -25 \degree .

Microscopia electrónica de barrido.

El microscopio electrónico de barrido es un dispositivo inventado en 1931 por Ernst Ruskaque que combina las mejores características del microscopio de luz y del microscopio de transmisión de electrones (Aguilera y Stanley, 1999).

Consta de una fuente (**cañón de electrones**) del haz de electrones el cual es acelerado hacia la parte inferior de la columna; una serie de **lentes** (**condensadores y objetivos**) los cuales actúan como controlador del diámetro del haz de acuerdo al enfoque que se hace en el espécimen; una serie de **aperturas**(una capa de hoyos de metal a micro escala) en las cuales el haz pasa a través de ellas afectando las propiedades del mismo; controles para la posición del espécimen (x, y, z) y orientación (inclinación y rotación); un área de **interacción haz/espécimen** que genera varios tipos de señales que pueden ser detectadas y procesadas para producir una imagen o espectro; y todo debe ser mantenido a **alta presión de vacío** (el valor de la parte superior de la columna debe ser más grande que el de la cámara de espécimen).

Para realizar estas funciones el microscopio electrónico de barrido (SEM) es necesario conocer las siguientes partes:

- a) Óptica electrónica
- b) Interacciones haz espécimen.
- c) Tipos de señales y características del detector
- d) Relación entre características de visibilidad/calidad de señal
- e) Procesamiento señal/imagen

La **óptica electrónica** está formada por un cañón electrónico, por los dispositivos de barrido y por lentes electromagnéticas condensadoras. El cañón es generador y acelerador de electrones. Existen tres tipos de cañones de electrones:

horquilla de tungsteno, hexaborato de lactano (LaB6) y cañón de campo de emisión (FEG).

El cátodo FEG consiste en una hoja de metal (usualmente de tungsteno) con punta afilada de radio menor a 100 nm. Una diferencia de potencial (V1= extracción de voltaje) entre el primer ánodo y la punta produce un campo magnético, concentrado en la punta que facilita la emisión de electrones. La diferencia de potencial entre la punta y el segundo ánodo (de tierra) determina la aceleración de voltaje (Vo) del cañón. Con la aceleración de voltaje los electrones viajan rápidamente hacia la columna y existe mayor poder de penetración. Ambos tipos de campos de emisión requieren que la punta permanezca libre de contaminantes y de oxido, además se requiere de una alta **presión de vacio** (10⁻¹ a 10⁻¹¹ Torr; 1.31579 X 10⁻¹⁴ atm) en la columna y la presión en la cámara de espécimen entre 10⁻⁵ a 10⁻⁶ Torr.

Algunos conceptos importantes son (Figura 10.a):

- 1. Voltaje para aceleración del haz (kV): que es el voltaje con el cual los electrones son acelerados hacia la parte inferior de la columna;
- Ángulo de convergencia de la sonda (α_p): La mitad del ángulo del cono de electrones convergen en el espécimen;
- Corriente de la sonda (i_p): la corriente afecta el espécimen y genera varias señales de imagen;
- 4. Diámetro de la sonda (d_p): el diámetro del haz final en la superficie del espécimen.

Figura 10. a) Visualización de conceptos 1, 2, 3 y 4; b) tipos de señales de electrones recibidas por los procesadores de imagen.

Incrementando el voltaje disminuyen las aberraciones de lentes y disminuye el diámetro de la sonda. Disminuyendo el diámetro de la sonda aumenta la resolución, un cañón de tungsteno termoiónico ofrece un diámetro de sonda muy pequeño.

Los tipos de señales que se emiten y que pueden interactuar con un campo eléctrico entre el espécimen y los electrones pueden ser clasificadas en dos tipos diferentes llamadas interacciones elásticas e interacciones inelásticas. En las interacciones *elásticas* no existe transferencia de energía de los electrones hacia el espécimen. En las interacciones *inelásticas* es transferida energía de los electrones hacia el espécimen. Los diferentes tipos de señales: electrones retro dispersados (BSE), electrones secundarios (SE), rayos X, electrones Auger, catodolunimecencia.

Los electrones retro dispersados (BSE) son producidos por la interacción elástica entre el haz y el núcleo de los átomos del espécimen. Los electrones secundarios (SE) son producidos por interacciones inelásticas entre los electrones de alta energía y los átomos del espécimen los cuales causan la eyección de los electrones de baja energía provenientes de los átomos que son recogidos por una placa cargada positivamente (ánodo) y son generados por tres diferentes tipos de mecanismos (Figura 10.b):

SE (I): son producidos cercanos a la incidencia del rayo con la muestra por lo que representa una alta resolución lateral.

SE (II) son producidos por las interacciones de alta energía con los electrones retro dispersados y los átomos del espécimen.

SE (III) son producidos por una alta energía de electrones retro dispersados que chocan con los polos y otros objetos sólidos de la cámara de espécimen.

Los electrones secundarios dan información de la morfología, rugosidad, porosidad y de la composición química de la muestra. Sin embargo, el daño por el haz de electrones ocurre en mayor grado en la forma de generación de calor en el punto irradiado. Para disminuir el daño al espécimen es necesario disminuir la intensidad del haz, disminuir el tiempo de exposición, escanear grandes áreas con poca magnificación y controlar el espesor de la cubierta de metal con la superficie del espécimen o bien fijación de la muestra con sustancias químicas especiales.

La preparación de la muestra puede variar (fijación, recubrimientos con una capa de metal delgado o sin preparación de la muestra).

2.6. Propiedades estructurales

Los cambios en las características micro-estructurales son indicadores de los cambios en las características macro-estructurales, tales como: densidad, porosidad, encogimiento y agrietamiento (Aguilera y Stanley, 1992). Además, la densidad, el encogimiento y la porosidad son usados para caracterizar la textura y calidad de los alimentos deshidratados (Schubert, 1987)

2.6.1. Densidad real (ρ_p)

La densidad es la variable que afecta la mayoría de las propiedades termofísicas y de transporte (Rahman y col., 1996). La densidad real de alimentos es la razón entre la masa y el volumen de una muestra sin considerar los poros del material.

$$\rho_{p} = \frac{m_{s} + m_{w}}{V_{s} + V_{w}}$$
(11)

Se ha considerado que el valor numérico de la densidad real de los alimentos aumenta linealmente con la disminución del contenido de humedad. Madamba, Driscoll y Buckle (1994) encontraron esta tendencia en sus experimentos con rebanadas de ajo. La misma tendencia fue identificada por Lozano, Rostein y Urbicain (1983) para la densidad real (dientes de ajo); sin embargo, encontraron que los valores de densidad real no se ajustan a una tendencia lineal en el caso de la zanahoria, pera, papa y papa dulce.

Krokida y Philippopoulos (2005) demostraron también en sus experimentos con plátano manzana, papa y zanahoria que la densidad real no se ajusta a una tendencia lineal con respecto al contenido de humead. Zogzas, Maroulis y Marinos-Kouris (1994) lo demuestran con los resultados encontrados para muestras de manzana, papa y zanahoria extraídas periódicamente del secador.

El tipo de secado puede influir en el comportamiento de la densidad real, de ahí las diferentes tendencias encontradas.

2.6.1.1. Modelos matemáticos para densidad real.

Susuki y colaboradores (1976) mencionan tres alternativas para ecuaciones que describan el comportamiento del encogimiento durante el secado, las cuales también pueden ser aplicadas para la densidad real.

- 2. Modelo de secado de núcleo, asume que la variación del volumen total de la muestra durante el secado consiste en dos partes: parte interna, en la cual la densidad es igual al valor inicial; parte externa, en la cual el valor numérico de densidad ha alcanzado el equilibrio de acuerdo a las condiciones específicas del secado.
- Modelo de secado de semi-núcleo es una alternativa del modelo 2, asume que la densidad de la parte externa del material es una media ponderada entre el valor inicial y el de equilibrio.

En estos tres casos las propiedades estructurales son calculadas en función del contenido de humedad y consideran al alimento como un compuesto binario (Agua-sólido). Zogzas, Maroulis y Marinos-kouris (1994) consideran las densidades del sólido y del agua como constantes, propone calcular la densidad real a partir de la ecuación 12, la cual, resulta de multiplicar la ecuación 11 por m_s/m_s.

$$\rho_{\rm p} = \frac{1+X}{\frac{1}{\rho_{\rm s}} + \frac{X}{\rho_{\rm w}}} \tag{12}$$

Donde la densidad del sólido (ρ_s) no cambia y está dada por:

$$\rho_{s} = \frac{m_{s}}{V_{s}}$$
(13)

La densidad del agua atrapada (ρ_w) (enclosed water) puede definirse como:

$$\rho_{\rm w} = \frac{m_{\rm w}}{V_{\rm w}} \tag{14}$$

Al considerar el valor numérico de la densidad del agua y del sólido constantes, se desprecia el *efecto de la temperatura* en la muestra. Madamba, Driscoll y Buckle (1994) calcularon la densidad real de dientes de ajo deshidratado a 70°C a partir de los resultados de la densidad aparente (ecuación 15), también consideraron una mezcla ideal (sólido seco y agua). Utilizaron las ecuaciones 12, 13, 14, y no consideraron el efecto de la temperatura.

$$\rho_{w} = \frac{\rho_{w} \cdot \rho_{s}}{\rho_{w} + (\rho_{s} - \rho_{w}) \cdot \frac{m_{w}}{m_{w} + m_{s}}}$$
(15)

Debido a que frecuentemente no se conoce ρ_s únicamente se han correlacionado los datos experimentales de ρ_p del alimento obtenidos durante el

$$\rho_{\rm p} = 2.694 - 1.316 \cdot \exp\left(0.1638 \cdot \frac{X}{X_0}\right)$$
(16)

Rodríguez y colaboradores (2006) observaron que la temperatura de secado afecta directamente la densidad real de las muestras deshidratadas, sin embargo, no explican el por qué. De acuerdo con sus resultados, la densidad real del ajo disminuye con respecto al incremento de la temperatura constante de secado; lo cual, coincide con la tendencia de la densidad para manzana, aunque no expresa, de Boukovalas y colaboradores (2006).

De acuerdo a Choi y Okos (1986), la densidad de los materiales alimenticios depende de la temperatura y la temperatura depende de la densidad del componente con mayor proporción presente en el alimento. Boukovalas y col. (2006) aplicaron el concepto de variación de densidad real por efecto de la temperatura y contenido de humedad. Utilizaron la ecuación 12 para obtener ρ_p y ρ_w la calcularon mediante la ecuación 17 obtenida por Maroulis y Saravacos (2003) y es similar a la obtenida por Choi y Okos (1986).

$$\rho_{\rm W} = W_0 + W_1 \cdot \mathbf{T} + W_2 \mathbf{T}^2 \tag{17}$$

Donde $W_0 = 997.10^2$; $W_1 = 3.14 \ 10^{-3}$; $W_2 = 3.76 \ 10^{-3}$, son válidos para un rango de temperatura de 0 a 150 °C. ρ_s se puede calcular con una relación de densidad-temperatura de acuerdo a Boukovalas (2006). Y r₀ y r₁ son parámetros ajustables y T es la temperatura de secado.

$$\rho_{\rm W} = \mathbf{r}_0 + \mathbf{r}_1 \cdot \mathbf{T} \tag{18}$$

La tendencia no-lineal de ρ_w con respecto a la temperatura de secado, ha sido profundamente estudiado y el comportamiento parabólico se atribuye al cambio entre los espacios moleculares que hay en la transición de fase de líquido-sólido (Weaver, Kotz y Treiche, 2006). En el caso de la densidad del sólido seco únicamente se ha obtenido una regresión lineal, sin embargo, al igual que en el caso del agua, la densidad del sólido depende de la temperatura (T_i) a la cual se encuentra la muestra a un tiempo determinado del secado (t_{secado}) y a un contenido de humedad dado (X).

En estudios de materiales puros como el carbón se ha encontrado que ρ_p es diferente para cada isótopo debido a la variación en la estructura química del carbón. Este análisis se realizó en base al aumento de los átomos de hidrógeno, a mayor cantidad de átomos de hidrógeno menor densidad real; no obstante, estos resultados son válidos para las moléculas simples, ya que en otros estudios la tendencia no se cumple (Franklin, 1948); sin embargo, puede plantearse la siguiente hipótesis: la variación de la densidad real es ocasionada por un cambio en el arreglo estructural y/o molecular del alimento de forma similar a la variación de la densidad del agua. Inherentemente, el cambio en el valor numérico de la densidad real de los alimentos durante el secado con respecto a la temperatura del proceso y con respecto al contenido de humedad no ha sido claramente expresado y explicado.

2.6.2. Densidad aparente (ρ_b)

La densidad aparente (ρ_b) de un material es considerada como la relación entre la masa y el volumen del material incluyendo los poros y el agua.

$$\rho_{\mathsf{b}} = \frac{\mathsf{m}_{\mathsf{s}} + \mathsf{m}_{\mathsf{w}}}{\mathsf{V}_{\mathsf{s}} + \mathsf{V}_{\mathsf{w}} + \mathsf{V}_{\mathsf{a}}},\tag{19}$$

De acuerdo a lo descrito por Krokida y Philippopoulos (2005) la densidad aparente es función del contenido de humedad, tipo de sólido y de la proporción del volumen del aire. Lozano, Rostein y Urbicain, 1983 encontraron un comportamiento no homogéneo para la densidad aparente, en algunos casos ρ_b se incrementaba con la disminución del contenido de humedad (X) y en otros casos ρ_b disminuía con X en cierto rango. Este comportamiento se atribuyó a la remoción de agua del material durante el secado y a la insignificante disminución de poros en el material.

De igual manera, Wang y Brennan (1993) encontraron que la densidad aparente de papa deshidratada mediante convección se incrementa cuando el contenido de humedad disminuye. Zogzas, Maroulis y Marinos-Kouris, (1994), encontraron que la densidad de la zanahoria y papa se incrementa con la remoción de agua, caso contrario con la manzana. En este último caso consideraron que la porosidad de la manzana no es despreciable.

También, se ha propuesto que la variación de densidad aparente puede ser ocasionada el encogimiento y pérdida de agua característicos de cada tipo de proceso. Sí es mayor el porcentaje de encogimiento que el porcentaje de pérdida de agua, la tendencia será ascendente, si el porcentaje de encogimiento es menor que el

porcentaje de pérdida de agua, la tendencia será descendente. Las tres propuestas de Susuki y colaboradores (1976) para explicar el comportamiento del encogimiento, descritas en el apartado de densidad real, también son válidas para explicar los cambios en la densidad aparente.

Una explicación reciente fue propuesta por Kasapis y colaboradores (2007), quienes mencionan que la variación de la densidad del ajo durante el secado puede ocasionarse por el volumen libre entre las moléculas, generado durante el proceso de secado. Concluyeron que en el estado vítreo el volumen libre del material es menor que en el estado plástico. También, algunos autores explican que una baja densidad aparente indica un gran volumen de poros formados durante el secado (Rahman, Hussain y Ng, 2002).

2.6.2.1. Modelos matemáticos para densidad aparente.

La mayoría de los modelos encontrados en la literatura para predecir la densidad son empíricos y los modelos fundamentales o teóricos solo han sido propuestos por un número reducido de autores (Rahman y col., 1996). Además, los modelos han sido formulados en base al contenido de humedad (X) y muy pocos consideran el encogimiento del material alimenticio, aunque éste es significativo en la mayoría de los casos (Mayor y Sereno, 2004; Moreira, Figueiredo y Sereno, 2000). Aunado a lo anterior, los modelos que consideran el encogimiento no consideran el efecto de la temperatura de secado.

Modelos empíricos

Los modelos empíricos para describir la densidad aparente durante el proceso de secado se basan en correlacionar X y ρ_b . Lozano, Rostein y Urbicain, (1983) correlacionaron los datos obtenidos para rebanadas de ajo (cortados por la mitad con respecto al eje más largo) deshidratado mediante convección a 60°C de acuerdo con la siguiente ecuación:

$$\rho_{\rm b} = 1.130 - 0.567 \frac{X}{X_0} + 0.187 \cdot \exp(0.866 \cdot \frac{X}{X_0})$$
(20)

Madamba, Driscoll y Buckle (1994) correlacionaron los datos de densidad aparente de rebanadas de ajo (1.5 x 0.8 x 1.8 cm; cortadas en forma paralela a las fibras del ajo) deshidratado por convección a 70° C de acuerdo con la siguiente ecuación:

$$\rho_{\rm W} = 1267.2 + 2.6 \, \text{X} - 0.1 \, \text{X}^2 \tag{21}$$

Ecuaciones similares fueron correlacionadas para calamari (Rahman y col., 1996), papa (Wang y Brenan, 1995). Estos modelos son válidos solamente para el producto para el cual fueron desarrollados y para las condiciones a las cuales se procesaron. No consideran la variación de la densidad ocasionada por el encogimiento, el desarrollo de poros, y los cambios fisicoquímicos durante el proceso de secado. Sin embargo, son útiles para comparar con los modelos teóricos.

Modelos teóricos o fundamentales.

Zogzas, Maroulis y Marinos-Kouris, (1994), consideraron que la densidad aparente depende del coeficiente de encogimiento de volumen y del contenido de humedad. El coeficiente de encogimiento de volumen fue calculado a partir del volumen especifico de la muestra (v), el cual se define como el volumen total por unidad de masa sólida.

$$\upsilon = \frac{V_s + V_w + V_a}{m_s}$$
(22)

El modelo teórico de Zogzas, Maroulis y Marinos-Kouris, (1994) asume que el coeficiente de encogimiento de volumen (β) es una función lineal del contenido de humedad y está definido por la ecuación.

$$\frac{\upsilon}{\upsilon_{s,a}} = 1 + \beta \cdot X \tag{23}$$

Donde $X=m_w/m_s$ y v_0 es el volumen específico a X=0. Combinando las ecuaciones 20, 22 y 23, Zogzas, Maroulis y Marinos-Kouris, (1994), obtuvieron la siguiente ecuación.

$$\rho_{\rm b} = \frac{\rho_{\rm b_{s,a}}(1+X)}{1+\beta \cdot X}$$
(24)

Considerando que $\upsilon_0 = \frac{1}{\rho_{b_{s,a}}}$ y que la densidad aparente del sólido a X=0 está dada

 $\text{por}\,\rho_{b_{s,a}}=\frac{m_s}{V_s+V_a}$, la ecuación 22 toma la siguiente forma:

$$\upsilon = \frac{1 + \beta \cdot X}{\rho_{b_{s,a}}}$$
(25)

Krokida y Maroulis (2000) mencionan que los parámetros ($\rho_{b_{s,a}}$, β , ρ_w) incorporados a los modelos estructurales propuestos por Zogzas, Maroulis y Marinos-Kouris, (1994), dependen del método de secado y de las condiciones del proceso. Propusieron las siguientes ecuaciones.

$$\rho_{\rm b} = \frac{1+X}{\frac{1}{\rho_{\rm b,o}} + \beta \cdot \frac{X}{\rho_{\rm w}}}$$
(26)

$$\upsilon = \frac{1}{\rho_{b_{s,a}}} + \beta \cdot \frac{X}{\rho_{w}}$$
(27)

Moreira, Figueiredo y Sereno, (2000) consideran que el coeficiente de encogimiento de volumen puede obtenerse considerando el volumen inicial (v_0) como referencia mediante la ecuación siguiente:

$$\beta = S_{v} = \frac{v}{v_{0}} = \frac{m/\rho_{b}}{m/\rho_{b_{0}}} = \frac{\rho_{b_{0}}(m_{s} + m_{w})}{\rho_{w}(m_{s} + m_{w_{0}})}$$
(28)

Donde ρ_{b_0} es la densidad aparente inicial del sólido y m_{w_0} es la masa del agua al inicio del secado. Despejando la ecuación 28 y multiplicando por 1/m_s, obtuvieron:

$$\rho_{\rm b} = \frac{\rho_{\rm b_0}(1+X)}{\beta(1+X_0)}$$
(29)

Es importante destacar que las ecuaciones 24 y 26 toman como referencia X=0 y la ecuación 29 toma como referencia a X_0 = contenido de humedad al inicio del secado.

El modelo teórico (Ecuación 30) más reciente es el publicado por Khalloufi, Almeida-Rivera y Bongers, (2010). Considera que (ρ_b) es función de la porosidad inicial del material (ϵ), X, ρ_w , ρ_s , $\beta(X)$ y colapso [$\delta(X)$]. Debido a que $\beta(X)$ y $\delta(X)$ son función del contenido de humedad, éstas dependen de las condiciones del proceso, de la naturaleza del producto a secar, del método de secado y de la etapa del secado (Khalloufi, Almeida-Rivera y Bongers, 2010).

$$\rho_{b}(X) = \frac{E(X) \cdot [1+X]}{F(X) + G(X) \cdot X} = \rho_{s} [1 - \varepsilon(X)] \left[\frac{1+X}{1 + \frac{\rho_{s}}{\rho_{w}} X} \right]$$
(30)

Donde

$$E(X) = \rho_{s} [1 - \varepsilon_{0}]$$
(31)

$$F(X) = 1 + \varepsilon_0 [\delta(X) - 1] + X_0 \frac{\rho_s}{\rho_w} [\beta(X) + \varepsilon_0 [\delta(X) - \beta(X)]]$$
(32)

$$\mathbf{G}(\mathbf{X}) = \frac{\rho_{s}}{\rho_{w}} \left[\left[1 - \varepsilon_{0} \right] \left[1 - \beta(\mathbf{X}) \right] \right]$$
(33)

$$\beta(X) = r_1 + r_2 X + r_3 X^2$$
(34)

$$\delta(X) = 1 - 0.5[1 - Tanh[r_4(X - X_c)]]$$
(35)

El coeficiente r_4 es indicador de la pendiente de $\delta(X)$ y X_c es la concentración crítica, la cual, determina la posición del punto de inflexión de la función de colapso.

Colapso $\delta(X)$ y encogimiento $\beta(X)$

De acuerdo a lo descrito por Madiouli y col., (2007) el encogimiento de un material puede ser expresado en términos del volumen específico, el colapso $\delta(X)$ y el coeficiente de encogimiento volumétrico $\beta(X)$. Levi y Karel (1995) sugieren que puede ocurrir un colapso (pérdida de estructura, reducción de tamaño de poros y encogimiento) de los materiales alimenticios durante el proceso de secado por convección. También mencionan que los materiales colapsados presentan una pobre capacidad de rehidratación en comparación con los materiales pre-colapsados a diferentes valores de (T-T_g). Para identificar el colapso, propusieron la siguiente ecuación:

$$\delta(X) = \frac{V - V_e}{V_0 - V_e}$$
(36)

La ecuación de colapso (Ecuación 35) propuesta por Khalloufi, Almeida-Rivera y Bongers, (2009) considera tres casos para el colapso y esta expresión garantiza que la función de colapso siempre empiece en uno y termine en cero.

- δ(X) =1. Esta situación corresponde a un caso ideal donde los poros del material fresco se mantienen intactos, con el volumen del aire constante sin importar las condiciones del proceso de secado. V_a(X) = V_{a₀}. No hay encogimiento.
- 2. $\delta(X) = 0$. Esta situación corresponde al un colapso total, el cual, resulta de la eliminación completa del volumen inicial del aire. $V_a(X) = 0$ Encogimiento total.

 0 < δ(X) < 1. En esta situación el colapso depende del contenido de humedad del producto y este valor no debe ser menor de cero ni mayor de uno. Encogimiento parcial.

Cuando el material se encuentra en estado plástico, el encogimiento compensa casi por completo la perdida de humedad, el volumen del material decrece linealmente con el contenido de humedad (Sereno y Mayor, 2004). Al deshidratarse los alimentos a baja temperatura, el contenido de humedad en el centro del material nunca es mucho mayor que el de la superficie, minimizando el estrés interno y con ello las grietas formadas (Rahman y col., 2002).

Algunas ecuaciones han sido obtenidas para describir el encogimiento de los alimentos. Khalloufi, Almeida-Rivera y Bongers, (2009) propusieron ecuaciones de segundo grado (ecuación 34).

2.6.3. Porosidad (ɛ)

La porosidad de los alimentos se considera como la relación entre el volumen de los poros formados y el volumen total de la muestra.

$$\varepsilon = \frac{V_a}{V_s + V_w + V_a},$$
(37)

Se considera que la porosidad desarrollada durante el secado está en función de: encogimiento, contenido de humedad inicial, la composición, tamaño del material, tipo de secado (ej. Liofilización o secado convectivo) y condiciones de secado (Madamba, Driscoll y Buckle, 1994). También, se considera que la porosidad depende de la rigidez celular del material.

Algunos autores mencionan que durante el proceso de secado la formación de poros aumenta con respecto al incremento del tiempo de secado, atribuido a la perdida de humedad durante el proceso (Lozano, Rostein y Urbicain, 1983; Marousis y Saravacos, 1990; Wang y Brennan, 1995; Attanasio y col., 2004; Sablani y col., 2007),si la reducción de volumen es menor que el volumen evaporado de agua, la operación de secado genera un incremento en la porosidad del material (Madiouli y col., 2007);sin embargo, la formación de poros envuelve otros conceptos, tales como la tensión superficial, presión de poro, estructura, presión del ambiente y mecanismos de transferencia de masa (Sablani y col., 2007)

Wang y Brennan (1993) observaron que a mayor temperatura isotérmica de secado la porosidad de la papa es mayor. Resultados similares fueron hallados por Attanasio y colaboradores (2004) en muestras de nuez deshidratadas mediante convección, a mayor temperatura de secado mayor porosidad. Lozano, Rostein y Urbicain, (1983) observaron que durante el proceso de secado la porosidad de hojuelas de ajo deshidratadas mediante convección disminuye con respecto a la disminución de humedad, a diferencia de otros materiales.

Rahman, Hussain y Ng (2002) clasificaron a la formación de poros en dos grupos genéricos: con punto de inversión y sin punto de inversión. En la Figura 11.a se muestra que los poros son colapsados hasta alcanzar un valor crítico y posteriormente la disminución de contenido de humedad durante el secado causa la formación de poros hasta finalizar el proceso. Caso contrario en la Figura 11.b. En la Figura 11.c se muestra que los poros aumentan o disminuyen en función del contenido de humedad.

Figura 11.Cambio de porosidad en función del contenido de humedad A y B con punto de inversión, C y D sin punto de inversión Rahman, Hussain y Ng (2002)

Rahman, Al-amri y Al-Bulushi (2002) observaron que a mayor porosidad del material existe un mayor oscurecimiento en muestras deshidratadas de tuna a causa de la oxidación, también, que con el secado por liofilización hay una mayor porosidad que con el secado convectivo y generalmente se obtiene una mejor calidad con liofilización. De las tres propiedades estructurales mencionadas hasta el momento, solo la porosidad ha sido asociada con los cambios de fase de segundo orden, una gran cantidad de poros ha sido ligada a una disminución en T_g (Sablani y col., 2007; Kasapis, y col., 2007).

La porosidad del material afecta significativamente el proceso de transferencia de masa y calor, de ahí la importancia de su evaluación en tiempo real, ya que es utilizada como una variable de transporte en la simulación y optimización de procesos (Martynenko, 2008)

2.7. Transiciones de fase en los alimentos.

Las transiciones de fase de los materiales conllevan variaciones importantes en las propiedades físicas (térmicas, mecánicas, eléctricas, difusionales, entre otras) del sistema y en la cinética de los posibles fenómenos (reacciones, transporte de masa y calor) ocurridos en el mismo, como consecuencia de la movilidad moléculas asociados a la transición (Martínez-Navarrete y col., 1999).

Los procesos térmicos, tales como el secado, pueden llevar a una transición de fase del material alimenticio cambiando de la misma forma las propiedades físicas y los procesos de transporte de masa y calor. Los alimentos son un sistema multicomponente, y en la mayoría de los casos, multifase.

Los estados básicos en que puede encontrarse la materia son sólido, líquido o gas. Sin embargo, los sólidos pueden variar de formas, cristalinas o amorfa, de acuerdo a las condiciones geométricas impuestas por las uniones o empaquetamiento de los átomos o moléculas en el espacio (Martínez-Navarrete y col., 1999).

El equilibrio termodinámico de los sólidos implica la ordenación de moléculas o átomos en retículos cristalinos. Los sólidos no cristalinos o amorfos (los cuales se encuentran en un estado de no equilibrio o equilibrio meta estable) se caracterizan por presentar estructuras químicas muy complejas que hacen difícil el ordenamiento de los átomos y moléculas. Cuando sus componentes son sometidos a temperaturas inferiores a la temperatura de congelación no forman redes totalmente ordenadas y podrían encontrarse en estado vítreo o gomoso (plástico) dependiendo de la temperatura (Martínez-Navarrete y col., 1999).

En el estado vítreo, las moléculas presentan un grado de inmovilidad similar al de los sólidos cristalinos, mientras que es un estado gomoso la movilidad aumenta drásticamente y el material adquiere propiedades mecánicas típicamente visco elásticas. La fase vítrea aparece frecuentemente en productos de **baja humedad** o congelados (Slade y Levine 1991).

Cambios en las propiedades físicas: Mecánicas y difusionales

Figura 12. Esquematización de los estados más frecuentes en que pueden encontrarse los constituyentes de los alimentos en función de la temperatura.

Fuente: Martínez-Navarrete y col., (1999)

Clasificación de las transiciones de fase

Según Ehrenfest (1933), las transiciones de fase pueden clasificarse como transiciones de primer orden, segundo orden y orden superior, estas últimas no han sido descritas para alimentos. Ésta clasificación se basa en el análisis de la discontinuidad que presentan distintas funciones de estado a la temperatura de transición.

Transición de primer orden: Ocurre cuando a una determinada temperatura (T) o presión (P), se da una discontinuidad en la primera derivada, respecto a P o T de la función energía libre (G). Algunas transiciones como la gelatinización de almidón y desnaturalización de proteínas, que suponen cambios conformacionales de biopolímeros, presentan también las mismas características termodinámicas.

Transiciones de segundo orden: Son aquellas que en la primera derivada de G no presenta discontinuidad en la transición, pero si la presenta en la segunda derivada

de G, respecto a T^2 , P^2 o TP. En estas transiciones no importa el calor latente ni cambios netos en el volumen del sistema, pero conllevan discontinuidad en los valores de Cp, compresibilidad isotérmica, y coeficiente de expansión térmica.

2.8. Temperatura de transición vítrea (Tg).

La temperatura de transición vítrea se define como aquella temperatura a la que corresponde a un cambio de fase de segundo orden de un estado plasmáticoamorfo a un estado vítreo o viceversa. Otros autores, mencionan que el estado físico de materiales amorfos puede cambiar a estado vítreo o estado plasmático cuanto se alcanza la temperatura de transición vítrea (Tg) (Chiralt, Moraga y Martínez Navarrete, 2004).

Existen diferentes métodos para determinar la temperatura de transición vítrea, entre los más comunes análisis termo mecánico dinámico (DMTA), resonancia magnética nuclear (NMR), calorimetría diferencial de barrido (DSC) y calorimetría diferencial de barrido modulado (MDSC); sin embargo, el método más utilizado por su simplicidad es el DSC (Katkov y Levine, 2004).

El método DSC consiste en medir el calor específico (Cp) o capacidad calorífica de dos sustancias (una de ellas de referencia) cuando se someten a un mismo programa de temperatura controlada (Rahman, 1999).

De acuerdo con Kasapis y colaboradores (2007) un alto valor de Tg en alimentos indica que éste es duro y quebradizo a temperatura ambiente. El volumen libre en los alimentos determina que tan quebradizo es un material.

Se ha encontrado que el contenido de humedad de los alimentos afecta directamente al valor de la temperatura de transición vítrea de los alimentos, a mayor contenido de humedad menor temperatura de transición vítrea. El agua es considerada como un plastificante (Topp y col., 1999) y al haber mayor cantidad de agua en la muestra alimenticia las moléculas se pueden mover más fácilmente, es decir, está en estado amorfo. El agua disminuye las fuerzas moleculares entre las cadenas poliméricas causando un incremento en la movilidad de las cadenas y una reducción en la temperatura de transición vítrea (Levine y Slade, 1991).

Cuando el proceso de secado se encuentra en el rango de bajo contenido de humedad, comienza la transición del estado plástico a vítreo; la rigidez del material

detiene el encogimiento y paralelamente la formación de poros puede suceder (Sereno y Mayor, 2004).

La relación entre porosidad y temperatura de transición vítrea recientemente se introdujo, Kasapis y colaboradores (2007), encontraron que la porosidad de la manzana deshidratada no influye en la temperatura de transición vítrea obtenida con DSC, sin embargo, con la temperatura de transición vítrea obtenida a partir de las propiedades visco elásticas observó que con el aumento de la porosidad la temperatura de transición vítrea disminuye; sin embargo, Rahman, Al-Marhubi y Al-Mahrouqui (2007) en estudios de espagueti observaron que el volumen libre de la muestra tiene un efecto en la medición de T_g.

Roos (1987) observó que se obtiene una T_g más alta en las muestras deshidratadas a mayor temperatura que a menor temperatura (liofilizado de fresas a 20, 40 y 60 °C). López (2006) observó la misma tendencia en ajo deshidratado mediante aire caliente (40, 50, 60 y 70°C). En mue stras de nuez deshidratadas por convección (40 y 60 °C) se encontró, también, que a mayor temperatura de secado, mayor Tg (Atanasio y col., 2004). Es necesario entonces observar si existe un efecto de la porosidad en la T_g , de tal forma que refleje un cambio estructural de una muestra sometida a diferentes temperaturas de secado, o bien, solo se debe al cambio en el contenido de humedad.

2.8.1. Transición de fase de otros componentes de los alimentos

Recientemente se encontró que los componentes alimenticios pueden contribuir en la variación de la temperatura de transición vítrea, tal es el caso mostrado por Kasapis y colaboradores (2007) quienes encontraron que los compuestos poliméricos del tejido de las manzanas contribuyen en un moderado incremento de la Tg (método DSC).

No obstante, durante el proceso de secado estos biopolímeros cambian con la temperatura generando cambios de fase de primer o de segundo orden.

Lípidos: los cambios de fase de la mayor parte de los lípidos son de primer orden, entre su forma cristalina y el estado líquido. Existen cambios de fase de segundo orden de algunos triglicéridos.

Carbohidratos: En los carbohidratos existen transiciones de primer orden como la gelatinización de almidones o cristalización de azucares.

Proteínas: al ser cadenas poliméricas de ordenación espacial definida que se someten a un proceso de calentamiento, los poli péptidos pueden cambiar hacia un nivel de mayor desorden originando una transición de primer orden (desnaturalización).

3. METODOLOGÍA.

Se deshidrato ajo (*Allium sativum*, L.) morado tipo Chinos tintos, tamaño 11, proveniente zacatecas. Se rebanó el ajo en forma longitudinal con espesor de 2.2 \pm 0.2 mm y se colocó en mallas de plástico de 25 x 25 cm, y posteriormente introducidas en un secador convectivo de túnel (Rodríguez y col., 2001). Durante el secado fueron removidas hojuelas de ajo para la determinación de las propiedades estructurales.

Túnel de secado

Para todas las pruebas se usó en secador de túnel con controladores de temperatura y velocidad de aire (Rodríguez y col., 2001), calentado por dos resistencias de 20 Ω (2.4 kW) cada una, conectadas en paralelo. El flujo de aire fue producido por un ventilador centrífugo (A-SQ, Armee Chicago). La velocidad de aire fue controlada con un variador de frecuencia (SAMI MINISTAR SNKU-501A, ABB), y la temperatura de secado fue regulada con un controlador PID (LOVE CONTROLS 16A3030, Dwyer Instruments, USA). La humedad relativa (HR), velocidad de aire (v), temperatura de secado (T_{secado}), temperatura de superficie (T_s), temperatura en el interior (T_i), y pérdida de peso fueron monitoreadas en tiempo real usando un sistema de adquisición de datos FieldPOINT®. El almacenamiento de datos fue realizado cada minute usando el software LabVIEW® de National Instruments®. Las temperaturas T_i y T_s fueron medidas con un termocople de implante para sólidos de calibre 40 (0.225 mm diam.), tipo T (A-08506-70, Cole Parmer). Para las mediciones de T_i el termocople fue colocado en una rebanada de ajo previamente perforada con una aguia (BD[™], 21G x 1 ½ in, bisel regular, Ø 0.81 mm). La perforación fue realizada cuidadosamente en forma paralela al eje más largo y en el centro de la rebanada. Para las mediciones de T_s el termocople fue adherido a la superficie del ajo usando la adhesividad natural del ajo y un circulo (Ø 0.5 cm) de papel aluminio adherible para incrementar el área de contacto.

3.1. Condiciones de secado.

Se probaron diferentes perfiles de calentamiento isotérmico (40, 50 and 60°C) y no isotérmico (ciclos ascendentes: A; ciclos descents: B). La velocidad de aire para cada prueba fue de 1.5 m/s, y el flujo fue paralelo al eje más largo de la superficie expuesta del ajo. Cada prueba y medición fue realizada por triplicado. Se realizó un ANOVA para los resultados con α =0.05 usando el software NCSS 2003.

Secado no-isotérmico.

El intervalo de temperaturas seleccionado fue de $40^{\circ}y$ 60° C, en base a estudios previos (López, 2006). Se programaron perfiles de temperatura en forma de onda trapezoidal con variación en el periodo de tiempo (τ), los periodos probados fueron 60, 80, 120 y 160 min (Figura 13).

Figura 13. Ejemplo del perfil de calentamiento ascendente (A) de aire utilizado en los programas cíclicos de secado.

La programación del ciclo se realizó de dos formas, la primera (ciclo ascendente), iniciando el calentamiento con 60° C (T_a) y la segunda (ciclo descendente, iniciando el calentamiento con 40° C (T_b), o bien, una onda trapezoidal y una onda trapezoidal inversa. El tiempo de calentamiento y enfriamiento (t_Q) en ambos casos fue de 20 min (Figura 13).

Para el ciclo ascendente (40-60), el secado se comenzó a 40° C (T_b) y se aumentó a 60° C (T_a), en 20 minutos (t_q). Posteriormente la temperatura se mantuvo constante durante 10, 20, 40 ó 60 minutos(t_c) dependiendo del periodo a trabajar (60, 80, 120 y 160 min respectivamente). Una vez terminado el lapso a temperatura constante (t_c) se inició el descenso de la temperatura a 40° C en un periodo de 20 minutos (t_q). El periodo (τ) es función de t_c .

$$\tau = \left(t_{Q} + t_{c}\right) \times 2. \tag{38}$$

El ciclo descendente (60-40) comenzó el secado con una temperatura de operación de 60° C (T_a), el tiempo transcurrido para llegar a 40° C (T_b) fueron 20 minutos (t_Q).Posteriormente la temperatura se mantuvo constante durante 10, 20, 40 y 60 minutos(t_c) dependiendo del periodo a trabajar (60, 80, 120 y 160 min

respectivamente). Una vez terminado el lapso a temperatura constante (t_c), nuevamente se aumentó la temperatura a 60° C en un periodo de 20 minutos (t_q).

TIEMPO		Т	EMPERATU	JRA DE INIO		DA TRAPEZ	OIDAL		
DE		Ascene	dente (40℃)		Descendente(60°C)				
SECADO		Pe	riodo (τ)			Pe	eriodo (τ)		
	60	80	120	160	60	80	120	160	
0	P11	P12	P13	P14	P15	P16	P17	P18	
90	P21	P22	P23	P24	P25	P26	P27	P28	
180	P31	P32	P33	P34	P35	P36	P37	P38	
270	P41	P42	P43	P44	P45	P46	P47	P48	
360	P51	P52	P53	P54	P55	P56	P57	P58	

Tabla IV. Diseño experimental para el secado a temperatura cíclica.

En las pruebas de secado isotérmico se evaluaron tres niveles de temperatura (40, 50 y 60 ° C).

Tabla V. Diseño experimental para el secado a temperatura constante.

TIEMPO	TEMPE	TEMPERATURA CONSTANTE DE SECADO						
DE SECADO	40	50	60					
0	P11	P12	P13					
90	P21	P22	P23					
180	P31	P32	P33					
270	P41	P42	P43					
360	P51	P52	P53					

3.2. Determinaciones de la densidad real ajo deshidratado.

Se utilizó un stereopicnómetro modelo SPY – 5DC marca Quantachrome, la calibración del equipo se realizó con una esfera de acero con diámetro nominal igual a 4.7625 cm y volumen de 56.5592 \pm 0.0023cm³. La celda de la muestra (1) tiene un volumen (V_c) de 161.6942 cm³ y la celda (2) tiene un volumen (V_a) de 73.2478 cm³.

Se utilizaron 30 ± 2 g de ajo deshidratado, la presión a utilizada fue de 1.1951 Kg. /cm.² ± 0.003, en este punto el gas para presurizar Va también entró con una presión de 0.050 Kg/cm² ± 0.00014. La fórmula que fue utilizada es la siguiente:

$$V_{p} = V_{c} + \frac{V_{A}}{1 - P_{1}/P_{2}}$$
(39)

Donde:

V_p Volumen de la muestra [m³]

V_c Volumen de celda contenedora de la muestra [m³]

 V_A Volumen agregado de gas (He, P = 0.050 kg/cm²) [m³]

P₁ Presión antes de V_A [kg/cm²]

P₂ Presión después de V_A [kg/cm²]

Una vez determinado el volumen de la muestra (V_p), se obtuvo la densidad del mismo haciendo un ajuste por el agua contenida en el ajo de la siguiente manera.

$$\rho_{\rm p} = \frac{{\rm m}_{\rm p}}{{\rm V}_{\rm p}} \tag{40}$$

Determinación de la densidad real anhidra del ajo:

Considerando que la masa del ajo completamente seco (m_s) está dada por:

$$\mathbf{m}_{s} = \mathbf{m}_{p} - \mathbf{m}_{w}, \qquad (41)$$

Y el volumen de la muestra está dada por:

$$V_{s} + V_{w} = V_{p}, \qquad (42)$$

La densidad del ajo anhidro (ρ_1) se determinó como sigue.

$$\rho_{s} = \frac{m_{s}}{V_{s}} = \frac{m_{p} - w_{w}}{V_{p} - \frac{w_{w}}{\rho_{w}}}.$$
(43)

Donde:

- ρ_s , ρ_w Densidad del ajo anhidro y la densidad del agua respectivamente [kg/m³].
- m_s, m_w Masa del ajo anhidro y masa de agua contenida en el ajo [kg].
- V_s, V_p Volumen del ajo anhidro volumen total del ajo (agua mas ajo anhidro) [m³].

3.3. Determinación de la densidad aparente ajo deshidratado.

El método de fuerza boyante ha sido utilizado por diversos autores. Lozano, Rostein y Urbicain, (1983) concluyeron que no hay diferencia significativa en la densidad obtenida con muestras cubiertas con cera y muestras no cubiertas.

La densidad aparente (ρ_b) fue medida empleando 1 ± 0.25 g de muestra no recubirta, usando el método de desplazamiento de volumen con hexano y un kit para medición densidad (YDK 01-OD, Sartorius). La medición fue llevada a cabo en \approx 10 s para prevenir la absorción del líquido de inmersión. Esta variable fue calculada con la siguiente ecuación:

$$\rho_{b} = \frac{m_{s-a} \cdot \rho_{li}}{m_{s-li}}$$
(44)

Donde:

$ ho_{b}, ho_{li}$	Densidad aparente del ajo y del líquido de inmersión [kg/m³].
m _{s-a}	Masa del ajo en el aire [kg].
m _{s-li}	Masa del ajo en el líquido de inmersión [kg].

3.4. Medición de volumen de hojuelas de ajo.

Las mediciones de volumen de las hojuelas de ajo se realizó con dos métodos: usando las dimensiones geométricas y a partir de los datos experimentales de densidad aparente.

Método de dimensiones geométricas.

Se basa en la medición del área y espesor de tres hojuelas de ajo previamente marcadas. Las hojuelas fueron extraídas periódicamente del secador. La medición de área se realizó midiendo los pixeles de fotografías de cada hojuela y convirtiéndolos en cm² utilizando el software ImageJ®. Como fondo de cada fotografía se utilizó una hoja milimétrica. La medición de espesor se realizó con un vernier de pie con sensibilidad de 0.001 in. El volumen calculado (espesor x área) se utilizó en las mediciones de encogimiento y colapso.

Cálculo a partir de datos experimentales de pb

Los datos de ρ_b y pérdida de peso fueron utilizados para calcular el volumen del ajo durante el proceso de secado. Se utilizó la expresión V= m/ ρ_b .

3.5. Determinación de la porosidad del ajo deshidratado.

La porosidad aparente, referida en apartados posteriores como porosidad, fue calculada usando los datos de densidad real y densidad aparente de acuerdo a lo establecido por Zogzas, Maroulis and Marinos-Kouris (1994) donde:

$$\varepsilon_{\rm p} = 1 - \frac{\rho_{\rm b}}{\rho_{\rm p}} \tag{45}$$

3.6. Ajuste de datos experimentales

Los datos experimentales de densidad aparente, densidad real y porosidad fueron ajustados a una ecuación no-lineal utilizando el software NCSS 2003. También, se obtuvo un modelo semi-teórico para describir el comportamiento de la densidad real utilizando como referencia la ecuación descrita por Boukouvalas y colaboradores (2006).

La micro estructura del material deshidratado fue observada en muestras previamente almacenadas de bolsas selladas a vacío. Se utilizó un microscopio (JEOL JSM-6360 LV, Tokio, Japón) operado a 15 kV en modo de electrones secundarios y a baja presión. Las muestras fueron deshidratadas a vacío y posteriormente recubiertas con una capa de oro-paladio de 10 nm. No se realizó fijación química.

3.8. Difusividad efectiva

La difusividad efectiva, para los experimentos de secado a temperatura constante, fue calculada usando los datos de peso obtenidos durante el proceso de secado con el software LabVIEW®. Se utilizó el método de las pendientes (ecuación 3) La curva de secado (W vs. t) fue comparada con la curva de secado terórica (W vs. Fo). El último dato de secado fue considerado X_e.

3.9. Determinación de los coeficientes convectivos de masa y calor.

La determinación de los coeficientes convectivos de masa y calor para el secado a temperatura constante se realizó con las siguientes ecuaciones:

Coeficiente convectivo de calor

$$h_{\rm H} = \frac{K_{\rm a}.Nu}{I} \tag{46}$$

Coeficiente convectivo de masa:

$$h_{\rm M} = \frac{D_{\rm ab}.Sh}{I}$$
(47)

Donde el número de Nusselt (Nu) y el número de Sherwood (Sh) son obtenidos con las correlaciones mostradas como ecuaciones 9 y 10. Los números adimensionales y ecuaciones para determinar propiedades del aire y ajo (anexo D)

3.10. Temperatura de transición vítrea (T_g).

La temperatura de transición vítrea fue obtenida usando un MDSC (Q100, TA-Instruments) y el software Universal Analysis 2000 4.1D. Las muestras fueron pulverizadas con mortero y pistilo. 25.56 ± 2.91 mg de ajo fueron sellados herméticamente en celdas de aluminio. Se utilizó una celda vacía como referencia. El escaneo se realizó en el rango de -50 a 100°C. La velocidad de calentamientoenfriamiento usado en el presente estudio fue de 4 °C/min con una modulación de ±1.0 °C en amplitud. Se analizaron los termogramas del flujo de calor reversible y no reversible. La temperatura de transición vítrea fue identificada como el punto medio entre Tg_{inicial} and Tg_{final} en la línea del flujo de calor reversible. La T_g del ajo con respect al contenido de humedad fue calculada usando la ecuación de Gordon y Taylor (1952)

$$Tg = \frac{\left(W_{s} \times Tg_{s} + k_{G-T} \times W_{w} \times Tg_{w}\right)}{W_{w} + k_{G-T} \times W_{w}}$$
(48)

Donde:

W_s , W_w	Fracción peso de cada componente [kg/kg s.h.]
Tg₅, Tg _w	Temperatura de transición vítrea de los componentes respectivos [º C]
K _{G-T}	Coeficiente de Gordon Y Taylor

La ecuación para calcular el coeficiente k_{G-T} a partir de las densidades y las temperaturas de transición vítrea de cada componente, de un sistema binario, se muestra a continuación.

$$k_{G-T} = \frac{(\rho_s \times Tg_s)}{(\rho_w \times Tg_w)}$$
(49)

Donde:

 $\label{eq:gamma} \begin{array}{ll} Tg_s, Tg_w & \mbox{Temperatura de transición vítrea de los componentes respectivos [^0 C]} \\ \rho_s y \rho_w \mbox{Densidad real de los componentes} [g/cm^3] \end{array}$

En el presente estudio, la densidad del agua (ρ_w) y la densidad real (ρ_p) fueron usados para calcular ρ_s usando la ecuación 11. El valor de T_{g_w} fue -135°C. T_{g_s} fue calculado por iteración utilizando las ecuaciones 46, 47 y los datos experimentales de (T_g).

Los resultados obtenidos durante el secado convectivo de ajo se muestran a continuación.

4.1. Deshidratación a temperatura constate

En la Figura 14.a se puede observar que en la primera hora de secado se pierde un 49% de agua en contenida en el material para el secado a 40 $^{\circ}$, 70% de agua en el secado a 50 $^{\circ}$ y 80% de agua en el secado a 60 $^{\circ}$. Es te comportamiento es común en alimentos deshidratados por convección. Es importante notar que durante los primeros 90 minutos del secado la transferencia de masa por evaporación, del agua de los poros del material, por efecto de la temperatura de secado es el fenómeno más importante.

Figura 14. (a) humedad adimensional durante el secado convectivo de ajo a temperatura constante, (b)humedad adimensional de ajo durante el secado en escala logaritmica a 40, 50 y 60℃.

Entre los minutos 120 y 300 se puede observar que el fenómeno de transferencia predominante es la difusión liquida en el interior del material (Figura 14.a). Al existir un cambio de pendiente en los datos de pérdida de humedad con respecto al tiempo de secado se infiere que el fenómeno difusivo líquido ha terminado o bien no es el fenómeno predominante (Figura 14.b).

Concluida la evaporación del agua de los poros y capilares, el agua del protoplasma (citoplasma) comienza a migrar hacia la membrana celular y paredes circuncidantes a través de los poros del tejido hasta la superficie (Aguilera y Stanley, 1999). Y la diferencia de concentraciones de agua entre el interior del material y la

superficie de sólido generalmente ocasiona esfuerzos y deformaciones en el material que no son deseables por el consumidor. Así mismo, la evaporación de la pequeña cantidad de agua ocasiona que exista un efecto de tensión superficial que disminuye la velocidad de secado. En la parte final del secado se presenta el mayor deterioro de la calidad del alimento, no obstante, durante todo el proceso se pierden compuestos nutraceúticos del material.

Figura 15. (a) Pérdida de humedad (dx/dt) durante el secado convectivo de ajo a temperatura constante, (b) humedad absoluta del aire durante el secado a 40, 50 y 60 °C.

Con la representación gráfica de la pérdida de humedad con respecto al contenido de humedad (b.s.) del ajo se observa que únicamente existe el periodo de velocidad decreciente (Figura 15.a). Y se confirma que durante la mayor parte del secado convectivo de ajo el fenómeno predominante en la transferencia de masa es la difusión-líquida.

La humedad absoluta durante el secado (Figura 15.b) es congruente con los datos de pérdida de humedad. En los primeros 120 minutos la humedad disminuye drásticamente y posteriormente varía muy sutilmente debido a la escasa cantidad de agua retirada del material.

4.1.1. Coeficientes de transporte de masa y calor:

La velocidad de deshidratación depende de factores que afectan la difusión de humedad en una dirección. Cambios en la estructura celular durante el proceso de secado afectan la difusión de humedad (D) en materiales (Aguilera y Stanley, 1999). En la Figura 16 se observa una disminucuión en D en función de una disminución en X/X_0 y de la temperatura de secado.

Figura 16. Variación de la Difusividad efectiva con respecto X/X₀.

Productos densos con baja porosidad reflejaron una baja difusividad (Tabla VI), lo cual, concuerda con los resultados encontrados por King (1980). En productos densos, la transferencia de humedad desde el interior del material hacia la superficie es menor que en materiales porosos. Resultados similares fueron obtenidos por Marinos-Kouris y Maroulis (2006) y Monteau, Bail y Hamdami (2004). Así mismo, la difusividad se incrementa con el aumento de la temperatura de secado, lo cual ha sido probado por otros autores (Rahman y col., 2002).

De acuero con la teoría de transición vítrea de William-Landel-Ferry theory (1955), la movilidad molecular es limitada por la fase en la que se encuentra el material. Una baja difusividad es acompañada por una disminución en la movilidad de las cadenas poliméricas y un incremento en T_g . Cuando el material se encuentra en estado cristalino amorfo la difusividad ya no es el mecanismo dominante (Levine y Slade, 1991), en ese momento el contenido de humedad es bajo debido al proceso de secado. Se puede inferir entonces un cambio de fase cuando X/X₀ obtuvo valores entre 0.12 y 0.07 (Fig. 16).

En el segundo periodo de velocidad decreciente, la velocidad de deshidratación está regida ahora por la velocidad del movimiento interna de la humedad, y la influencia de las variables externas va en disminución (Perry y Green, 2001).

Coeficientes convectivos de masa y calor

Los coeficientes de transferencia de masa y calor para el ajo deshidratado por convección se muestran en la tabla VI. El número de Biot de transferencia de calor, Bi_c

= hL/k = (1/k/L)/ (1/h), es la relación entre la resistencia interna a la transferencia de calor, (1/k/L) y la resistencia a la transferencia de energía por convección, 1/h. El número de Biot de transferencia de materia, $Bi_M = (1/D_{AB}/L)/(1/k_M)$, es la relación entre la resistencia interna a la transferencia de materia, $1/D_{AB}/L$, y la resistencia externa, $1/k_M$.

Cuando los números de Biot, Bi_c y Bi_M, están en los rangos 0,1 < Bi_c< 100 y 0,1 < Bi_M< 100, existen tanto la resistencia interna como la externa a la transferencia de calor y materia, respectivamente. Cuando los números de Biot Bi_C< 0,1 y Bi_M< 0,1 no existen resistencias internas y cuando Bi_C> 100 y Bi_M> 100 no existen resistencias externas (Luikov, 1968).

T _{secado}	Re	h _C (kg/s³℃)	Bic	D _{eff} (m²/s)	h _m (m/s)	Bi _m
40	24158.67	10.14	11.02	2.99E-11	0.009760915	8.16E+07
40	21698.24	9.60	10.44	2.99E-11	0.009218619	7.71E+07
50	20013.93	9.37	10.18	4.35E-11	0.009224129	5.30E+07
50	21866.09	9.78	10.63	4.35E-11	0.009649036	5.55E+07
60	18567.70	9.11	9.90	7.12E-11	0.009082715	3.19E+07
60	19506.58	9.34	10.16	7.12E-11	0.009330412	3.28E+07

Tabla VI. Coeficientes convectivos de transferencia de masa y calor para ajo

Por lo anterior, existe resistencia interna y externa a la transferencia de calor. No existe resistencia externa a la transferencia de masa.

4.1.2. Propiedades estructurales del ajo.

Los datos experimentales de densidad real (ρ_p) y densidad aparente (ρ_b) con respecto al contenido de humedad se muestran en la Figura 17. El contenido de humedad inicial fue de 1.83 ± 0.21 kg/kg. ρ_p varía linealmente desde 1214 hasta 1677 kg/m³ con respecto a la disminución del contenido de humedad adimensional (X/X₀) desde 1.0 hasta 0.18. Posterior a este valor, se observó un cambio en la tendencia lineal en función de la temperatura del aire de secado (T_a); ρ_p disminuyó desde 1700 a 1100 kg/m³. ρ_b varía linealmente desde 1045 a 1345 kg/m³ con respecto a la disminución de humedad adimensional (X/X₀) desde 1.0 hasta 0.1. Subsecuentemente ρ_b tiene un cambio en la tendencia, disminuyendo desde 1345 hasta 1150 kg/m³ con respecto a la disminución de X/X₀

Figura 17. (a) Densidad real y (b) densidad aparente del ajo durante el secado convectivo a temperatura constante de 40, 50 y 60°C. Presente trabajo: ecuación 50, Propuesta por Lozano, Rostein y Urbicain, (1983) para ρ_p y ρ_b : Ecuaciones 16 y 20 respectivamente.

Considerando que la densidad es función del volumen (ecuaciones 11 y 15), el concepto empleado en estudios de encogimiento (V/V₀) fue usado para explicar el comportamiento de la densidad durante el proceso de secado. Éste considera que la reducción de volumen es proporcional a la pérdida de agua (Lozano, Rostein y Urbicain, 1983; Madamba, Driscoll y Buckle, 1994) y que ρ tiene un comportamiento lineal con respecto al contenido de humedad.

La no linealidad puede ser explicada por el hecho de que la reducción de volumen no es equivalente a la pérdida de agua debido al endurecimiento de la superficie de la muestra, limitando así la transferencia de humedad, particularmente durante la parte final del proceso de secado. Sí este es el caso, entonces la tendencia es no lineal con respecto al contenido de humedad (Sablani y col., 2007; Krokida y Philippopoulos, 2005; Rahman, Hussain, y Ng 2002; Zogzas, Maroulis y Marinos-Kouris, 1994). Sin embargo, el comportamiento no lineal también ha sido atribuido al cierre de poros producido en la última etapa del secado (Lozano, Rostein y Urbicain, 1983). En este caso, el volumen del solido considerado en el cálculo de densidad es mayor al volumen real.

Finalmente, es posible sugerir que el cambio en densidad está relacionado a la composición química (Frankin, 1948), la cual, es afectada por las transiciones de fase ocurridas durante el secado. De acuerdo con Pezzutti y Crapiste (1997) se produce un proceso de irreversibilidad, debido a cambios estructurales y fisicoquímicos que el material sufre durante el proceso de deshidratación. Por ello, es de interés evaluar el

efecto de las transiciones de fase en la densidad con el fin de profundizar aún más en este fenómeno.

La Figura 18.a muestra la porosidad (ϵ) del ajo en función de X/X₀. Estadísticamente la temperatura de secado afecta la formación de poros en el material deshidratado. La porosidad del ajo fresco varía entre 0.14 y 0.16. La perdida de agua causa una disminución de la porosidad cuando X/X₀ se aproxima a 0.1; esta disminución es particularmente drástica a temperaturas de secado de 50 y 60 °C. La porosidad se considera dependiente del contenido de humedad inicial del material, la composición y tamaño de la muestra alimenticia, las condiciones de secado: temperatura, humedad relativa y velocidad de aire (Marousis y Saravacos, 1990).

Figura 18. (a)Comportamiento porosidad durante el proceso de secado (b) Densidad real, densidad aparente y temperatura de transición vitea de ajo, deshidratado a temperatura constante (40, 50 y 60 °C), calculadas en base a $X=0.1 \text{ kg}_w/\text{kg}_{ss}$.

Rahaman, Hussain y Ng (2002) explican el comportamiento de la porosidad a través de las tendencias encontradas en diversos materiales. De acuerdo a estas tendencias, la porosidad a 40°C está relacionada con el contenido de humedad, mientras que a altas temperaturas, se observa un incremento en la formación de poros durante la primera parte del proceso de secado hasta alcanzar un valor crítico, es cual, es seguido por un colapso ocasionado por la pérdida de agua. En adición, el efecto de endurecimiento de la superficie puede afectar la formación of poros (Zogzas, Maroulis y Marinos-Kouris, 1994), especialmente a altas temperaturas (Rahaman, Hussain y Ng, 2002). Se ha encontrado que la eliminación de agua es acompañada por encogimiento; esto produce un incremento en la densidad aparente y porosidad durante el secado (Lozano, Rostein y Urbicain, 1983; Wang y Brennan, 1995; Zogzas, Maroulis y Marinos-Kouris, 1994; Attanasio y col., 2004; Talla y col., 2004; Krokida y Philippopoulos, 2005; Gabas y col., 2005; Sablani y col., 2007).

La porosidad requerida en cada material es función del uso final que tiene. Bai y colaboradores (2002) mencionan que para la preparación de una sopa instantánea se requiere una alta capacidad de rehidratación, por lo tanto una gran porosidad. En el caso del ajo conviene una porosidad baja para que las sustancias bio-activas se mantengan dentro del material el mayor tiempo posible.

Se encontró, también, que la temperatura del aire tiene un efecto significativo en la variación de la densidad. La densidad real y la densidad aparente disminuyen con respecto al aumento de la temperatura de secado (Figura 18.b). Las densidades mostradas fueron calculadas usando como referencia la densidad obtenida al final del secado y ajustada matemáticamente a un contenido de humedad base seca propuesto de 0.1 Kg_a/kg_{ss}.

4.1.2.1. Modelos para propiedades estructurales

Generalmente, las ecuaciones propuestas para representar los cambios en ρ_p , ρ_b y ε son función del contenido de humedad sin considerar adecuadamente el efecto de la temperatura del aire de secado. Cuando los datos no tinen una tendencia lineal con respecto al contenido de humedad, las ecuaciones no proveen un ajuste adecuado. Una aproximación para ajustar los datos experimentales es la ecuación empirica 50, compuesta por la suma de tres terminos exponenciales cuyos coeficientes se muestran en la tabla VII. Se obtuvo un ajuste adecuado (R² > 0.85) para esta ecuación.

$$\mathbf{r}_{1} \cdot \exp(-\mathbf{r}_{2} \cdot X/X_{0}) - \mathbf{r}_{3} \cdot \exp(-\mathbf{r}_{4} \cdot X/X_{0}) + \mathbf{r}_{5} \cdot \exp(-\mathbf{r}_{6} \cdot X/X_{0}) = \begin{cases} \rho_{p}, \\ \rho_{b}, \\ \epsilon. \end{cases}$$
(50)

Sin embargo, esta ecuación no tiene ninguna explicación física (fenomenologica).

Tabla **VII**. Coeficientes de la ecación 51 obtenidos para ρ_p , ρ_b y ϵ de muestras de ajo deshidratado a 40,50 y 60°C.

Parámetro	T _{secado}			Coeficiente				R^2
	(°C)	r ₁	r ₂	r ₃	r ₄	r ₅	r ₆	
$ ho_{ m p}$	40	910.48	0.086	111488.57	113.34	823.52	0.63	0.98
(kg/m ³)	50	31322.86	8.55	31728.11	8.68	1531.97	0.23	0.85
	60	1444.30	0.17	68024.89	25.00	66864.08	24.68	0.98
$ ho_b$	40	10251.39	68.82	15755.42	77.02	1341.84	0.24	0.98

_									
	(kg/m³)	50	1261.77	0.19	3931.75	41.58	3434.04	338.13	0.99
		60	997.32	0.00	194.32	26.30	283.43	2.01	0.90
	ε	40	2.38	0.54	3.06	0.63	0.73	0.67	0.91
		50	0.14	0.00	2.26	20.74	2.05	20.74	0.91
		60	0.17	0.08	1.33	45.90	0.74	45.91	0.93

Las diferencias encontradas entre los resultado del presente trabajo y los resultados obtenidos con la ecuación 16 propuesta por Lozano, Rostein y Urbicain (1983), donde se observa un comportamiento lineal con respecto al contenido de humedad, se deben al método empleado para obtener la densidad real. El equipo que utilizaron se basa en el concepto de desplazamiento de volumen de un gas ideal, sin embargo la muestra no se presurizó para garantizar la que el aire entra en todos los poros de las muestras. En cambio, el método utilizado en presente trabajo se presurizó la cámara contenedora de la muestra a 1.195 kg/m².

Modelos para densidad real.

Ahora bien, si se utiliza la ecuación (12) sin ninguna modificación, los resultados no son representativos de los datos experimentales. Esto se debe a que el la densidad del sólido seco (ρ_s) no es constante. Con la regresión lineal propuesta por Boukouvalas (2006) para el ajuste de ρ_s , a una ecuación lineal, no se obtiene una buena aproximación de ρ_p , debido a que el material es afectado por las condiciones de secado y las condiciones en el interior del material. En la Figura 19.a se muestran los datos de ρ_s calculados con la ecuación 43, y con la ecuación 51 con R²=0.963388.

$$\rho_{s} = \frac{\left(r - r_{2} \cdot T - r_{3} \cdot T_{a}^{2}\right) - \left(r'_{2} \cdot T_{i} - r'_{3} \cdot T_{i}^{2}\right) - r_{4} \cdot T_{a} \cdot T_{i}}{1 - r_{5} \cdot T_{a} - r_{6} \cdot T_{i}}$$
(51)

La densidad del sólido seco disminuye en función de la temperatura del aire (T_a) y de la temperatura en el interior del material (T_i) . En adición, la T_i es afectada por el contenido de humedad de la muestra (X). Por lo tanto, la densidad del sólido seco es afectada, también, por el contenido de humedad del material. Por ello, ρ_s se presenta en función de X/X₀.

Figura 19. (a) Densidad del sólido seco obtenida con la ecuación 51 y (b) temperatura en el interior de las hojuelas de ajo durante el proceso de secado por convección.

De igual forma se propuso una ecuación polinomial para determinar T_i en función de T y X con una $R^2 = 0.991531$. Los valores calculados se muestran en la Figura 19.b.

 $T_i = 3.00922 + 0.9830576T_a - 0.567705T_a \cdot X + 7.2425X^2 - 1.047582X^3$ (52)

En la Figura 20 se muestra el contraste entre los datos experimentales de ρ_p y las curvas obtenidas con la ecuación 12. Se consideraron los datos obtenidos con la ecuación 52 de Ti.

Figura 20. Comparación de datos experimentales de densidad real con valores obtenidos con las ecuaciones propuestas por Boukouvalas y colaboadores, (2006) (Ecs. 12, 17 y 18); por Lozano, Rostein y Urbicain, (1983) (Ec. 16) y con las ecuaciones propuestas en el presente trabajo (Ecs. 12, 17 y 51).

El analisis de el encogimiento y colapso, necesarios para calcular densidad aparente, se muestran a continuación. En la Figura 21.a se observa el encogimiento del ajo deshidaratado por convección a 40, 50 y 60 °C en el año 2006 (Trabajo experimental no reportado en la tesis de López, 2006). En la Figura 21.b se observa el encogimiento de ajo deshidratado por convección del presente trabajo. En ambos casos se utilizó el método de dimensiones geométricas.

Figura 21. Datos de encogimiento (utilizando el método de Dimensiones geométricas) de hojuelas de ajo deshidratadas por convección a 40, 50 y 60 °C (a. Trabajo experimental no publicado en tesis de maestría, 2006; b. Presente trabajo, 2007)

En la Figura 22 se observa el ecogimiento de hojuelas de ajo obtenido con el método de fuerza boyante y el encogimiento de diferentes materiales obtenidos por Lozano, Rostein y Urbicain (1983) utilizando el mismo metodo. En ambas figuras (21 y 22) se observa un comportamiento lineal con pequeñas variaciones, casi imperseptibles, a contenidos de humedad bajos. La mayoría de los autores asume que el encogimiento es lineal (Zogzas, Maroulis y Marinos-Kouris, 1994; Moreira, Figueiredo y Sereno, 2000; Mayor y Sereno, 2004) y a lo sumo, se considera que es un parámetro que se ajusta a un polinomio de segundo grado (Khalloufi, Almeida-Rivera y Bongers, 2010). Además, se considera que solo depende del contenido de humedad y pocos son los autores que incorporan en sus modelos a la porosidad, densidad del agua y densidad inicial del sólido seco como factores que modifican el valor del encogimiento.

Al inicio del secado, donde el material se encuentra en estado plástico-amorfo, tanto las mediciones de volumen por el método de dimensiones geométricas (áreaespesor) y por medio del método de fuerza boyante son similares. No obstante, la dispersión de los datos es mayor con el método de dimensiones geométricas.

Figura 22. a) Encogimiento de diferentes productos (Lozano, Rostein y Urbicain, 1983), b) Datos de encogimiento (utilizando el método de fuerza boyante) de hojuelas de ajo deshidratadas por convección a 40, 50 y 60 ℃ (Pres ente trabajo, 2007)

En el cuadro pequeño de la Figura 22.b se observa que los valores de encogimiento al final del secado no se ajustan a una tendencia lineal. Esto se debe a que cuando el material esta en el proceso de cambio de fase de segundo orden se produce una rigidez de la hojuela, en concecuencia un alabeo que ocasiona una diferencia entre los métodos de medición. El área obtenida por fotografía fue menor al área real y por lo tanto la relación V/V₀ fue menor que la determinada por el método de fuerza boyante. En conclusión, los métodos utilizados para determinar el volumen son un fuerte factor que influencia la tendencia de densidad aparente y es recomendable medir la densidad por medio de fuerza boyante cuando se produce el cambio de fase.

En la tabla VIII se muestran los valores utilizados para resolver la ecuación 36, 41 y 42 de los datos de ajo deshidratado en el 2006 y en el 2007.

Año	Т	Ec. V/V ₀	R²	β X/X₀+1	R ²
	(°C)				
2006	40	-0.0499(X/X ₀) ² + 0.787 X/X ₀ + 0.26	0.9827	2.7531 X/X ₀ +1	0.9824
	50	$-0.2169(X/X_0)^2 + 0.8699X/X_0 + 0.3416$	0.9622	1.7311X/X ₀ +1	0.9559
	60	$-0.3163(X/X_0)^2 + 0.9054X/X_0 + 0.4099$	0.9637	1.2714 X/X ₀ +1	0.9534
2007	40	$-0.7847(X/X_0)^2 + 1.5315X/X_0 + 0.2536$	0.9732	2.065 X/X ₀ +1	0.9431
	50	$-4.659(X/X_0)^2 + 5.636X/X_0 + 0.0228$	0.951	1.9416 X/X ₀ +1	0.8892
	60	$0.2348(X/X_0)^2 + 0.2687X/X_0 + 0.4966$	0.9648	1.0425 X/X ₀ +1	0.9311

Tabla **VIII**. Ecuaciones de para obtener V/V_0 con los los datos de volumen del 2006 y 2007 objenidos con el método de dimensiones geométricas.
En la Figura 23 se muestra el colapso de hojuelas de ajo obtenidas con la ecuación de Khalloufi (Ec. 35), para lo datos del 2006 y del 2007 (datos calculados con el método de fuerza boyante). Al igual que en el caso de encogimiento, la dispersión de los valores de colapso obtenidos con el método de fuerza boyante es menor que los valores obtenidos con el método de dimensiones geométricas. Nuevamente, la diferencia se atribuye a que en el método de dimensiones geométricas: 1) La medición de área y espesor se hace por separado, 2) el área puede no ser real, ya que el área de las hendiduras no es exactamente cuantificada.

Figura 23. Colapso de muestras de ajo utilizando la ecuación 35 a) datos del 2006 (método: dimensiones geométricas), b) datos del 2007 (método: fuerza boyante)

Se puede observar tendencias similares en el colapso de ambas muestras y es similar a las tendencias encontradas por diversos autores (Levi y Karel, 1995). Los valores para r_4 y X_c para la ecuación de Khalloufi se muestran en la tabla IX.

T (℃)		2006				2007			
	r ₄		Xc	R^2		r 4	Xc	R^2	
40		3.03	0.5174		0.97	1.75	1.00	0.99	
50		2.83	0.4430		0.93	1.69	1.00	0.98	
60		3.64	0.3571		0.96	1.70	0.98	0.98	

Tabla IX. Valores de r_4 y X_c de la ecuación 35 para los datos del 2006 y 2007.

Pese a que se obtienen valores de R² satisfactorios en colapso y encogimiento los valores de densidad aparente obtenidos con la ecuación de Khalloufi no son congruentes con los valores experimentales (Figura 24.a). Lo anterior se debe a que la ecuación de Khalloufi se debe resolver simultáneamente con un programa de optimización (objetivo no planteado en el presente trabajo), de tal forma, que las ecuaciones son ajustadas para resolver el sistema.

Figura 24. Calculo de densidad del ajo deshidratado por convección utilizando las ecuaciones de: a) Khalloufi, Almeida-Rivera y Bongers, (2009), Ec. 30; b) Moreira, Figueiredo y Sereno, (2000), Ec. 29; Zogzas, Maroulis y Marinos-Kouris, (1994), Ec. 24; Lozano, Rostein y Urbicain, (1983), Ec. 20; presente trabajo, Ec. 50.

Las ecuaciones de densidad que consideran al encogimiento como parámetro de ajuste, son muy sensibles a cambios mímimos del volumen. Si se utilizan las ecuaciones lineales y cuadráticas propuestas para el encogimiento se desprecian las variaciones mínimas de volumen al final del secado ocasionando un cálculo erroneo de la densidad aparente. En la figura 24.b también se observan los valores obtenidos con las ecuaciones propuestas por Moreira, Figueiredo y Sereno, (2000) y Zogzas, Maroulis y Marinos-Kouris, (1994) utilizando los datos de encogimiento (Método: dimensiones geométricas) de la experimentación con ajo rebanado deshidratado a 40°C del 2006. La dispersión encontrada fue muy gra nde. Utilizando los valores de volumen con el método (dimensiones geométricas), donde la variación de V/V₀ se encuentra entre 0.3 a 0.35, se originan variaciones de densidad entre 1350 a 1750 kg/m³. Una variación del 0.05% en V/V₀ ocasiona una variación del 40% en densidad aparente.

Al utilizar la ecuación 30 (Khalloufi Almeida-Rivera y Bongers, 2010) con los datos de la porosidad del ajo obtenida por Lozano, Rostein y Urbicain, (1983) se obtuvo una tendencia similar a los datos obtenidos con la ecuación 21. Por lo tanto, se concluye que no necesariamente se tienen que utilizar parámetros de Khalloufi para resolver la ecuación (Figura 25.b).

Figura 25. Calculo de densidad aparente a) con datos de volumen de Lozano, Rostein y Urbicain, (1983) utilizando la ecuación de 29; b) con datos de ajo del 2007 utilizando las ecuaciones 24 y 29.

Con el método de fuerza boyante, el cual tambien fue utilizado por Lozano, Rostein y Urbicain, (1983), se obtienen resultados menos dispersos (Figura 25). Sin embargo, es un cálculo redundante puesto que se parte de densidad aparente para calcular el encogimiento. *Por lo tanto, en trabajos futuros se recomienda utilizar una ecuación para calcular* ρ_b *en función de las densidades del sólido, densidad del agua, volumen del aire, contenido de humedad y temperatura del aire de secado.* El volumen del aire podría ser calculado con una ecuación de regresión o bien un modelo que describa el comportamiento de la porosidad de los materiales alimenticios.

4.1.3. Estructura celular

De acuerdo con Aguilera y Sranley (1999), la estructura celular es afectada cuando el agua en el protoplasma migra a través de las membranas celulares hacia los poros internos y posteriormente hacia la superficie de los alimentos, causando ruptura de membrabas (agrietamiento). El efecto del del secado en la estructura celular se muestra en la Figura 26. Se observó una estructura celular tridimencional bien definida en el ajo fresco (Figura 26.a) mientras que en muestras deshidratadas a una temperatura alta (60°C) se obsevó una gran cantidad de grietas y pérdida de forma tridimensional de la estructura celular (Figura 26.d). Hay un mayor hundimiento en los compartimentos celulares indicando una mayor extracción de agua y un mayor stress. Resultados similares fueron reportados por Bai y col. (2002) para manzanas deshidratadas por convección. Sacilik y Unal (2005) encontraron que las características estructurales de rebanadas de ajo (Kastamonu) son afectadas por la temperatura del aire de secado y el espesor de las muestras. También es posible que

(a)

(b)

Figura 26. Microestructura del ajo fresco (a), deshidratado a 40°C (b), deshidratado a 50°C (c) and deshidratado 60°C (d)

El daño en la estructura celular (agrietamiento celular) puede ocasionar la pérdida de propiedades nutracéuticas importantes (Lanzoti, 2006; Amagase y col., 2001; Lawson, 1993). El agrietamiento y la forma tridimensional observados en las micrografías de muestras deshidratadas es consistente con la porosidad (Figura 18.a) y densidad (Figura 17) al final del proceso de secado. Una pequeña cantidad de agritamiento celular con pocos poros indica un producto denso (Aguilera y Stanley, 1999).

En la Figura 27 se muestra la intesección de la temperatura de transición vítrea (T_g) con la temperatura interna (T_i) y la temperatura de superficie de las rebanadas de ajo (T_s) . Un punto crítico fue encontrado cuando $T_i \cong T_s \cong T_g$, el cual, indicando un cambio de fase de segundo orden. El estado vítreo fue idenficado a contenidos de humedad de 0.0749, 0.0937 y 0.1172 kg/kg para ajo deshidratado a 60, 50 y 40 °C, respectivamente, cuando $(T_g-T_i) > 0$ y $(T_g-T_s) > 0$. El momento en el cual ocurre el cambio de fase es influenciado por la temperatura de secado y el historial térmico del material (Roos, 1987; Sablani y col., 2007; Sablani, Kasapis y Rahman, 2007; Kasapis y col., 2007).

Figura 27. Temperatura de superficie, temperatura interna, temperatura de transición vítrea y pérdida de humedad de muestras deshidratadas con perfiles de calentamiento trapezoidales A y D con diferentes periodos de onda 60 (a), 80 (b), 120 (c) y 160 (d).

Posterior a una transición de fase de segundo orden, la movilidad molecular en los alimentos es lenta y el producto es quebradizo. Por lo tanto, T_g puede ser usado como referencia para evaluar la degradación de calidad ocurrida en un tiempo dado en el proceso y ayudar a determinar apropiadamente cuando detener el secado.

Estudios previos han sugerido la importancia de las transiciones ocurridas durante el proceso de secado, y sus efectos en las propiedades estructurales (Bai, y col., 2002; Rahman, Hussain y Ng, 2002; Sablani y col., 2007; Sablani, Kasapis y Rahman, 2007; Kasapis y col., 2007). Arreglos conformacionales, arreglos moleculares

y la formación de nuevos componentes pueden ser producidos por los efectos térmicos del secado (Amagase y col., 2001) y por las transiciones de fase de segundo orden (Martínez-Navarrete, Chiralt, y Fito, 1999).

En materiales puros como el carbón, Franklin (1948) demostró que una disminución en la densidad corresponde al incremento de hidrógeno presente en las muestras. A pesar de la falta de evidencia experimental de la relación densidad-composición de los alimentos complejos, tales como el ajo, la presencia de un número significativo de cambios químicos en las estructuras superficiales e internas como resultado del proceso de secado se ha demostrado (reacciones enzimáticas y no enzimáticas , oscurecimiento, cambios de color). Por lo tanto, así como la composición química produce cambios en densidad y un cambio de fase afecta la composición química, puede esperarse un cambio de densidad debido a una transición vítrea. Y en el caso del ajo conviene un producto más denso (40°C) donde el cambio de fase ocurre mucho tiempo después de que el material está seco y no agrietado de manera significativa reteniendo mayor cantidad de compuestos nutracéuticos.

Se pudo relacionar el cambio de fase de segundo orden (Figura 27) con el cambio de pendiente en las tendencias de densidad real, densidad aparente y porosidad de ajo (Figura 17 y 18.a). Adicionalmente, altos valores de T_g fueron encontrados en muestras más densas (Figura 18.b), estos resultados confirman que la composición química de las muestras fueron modificadas por el cambio de fase ocurrido por efecto del secado, y que nuevos productos fueron formados, dando al alimento características diferentes a las del material original.

Los resultados de este estudio también demuestran que una disminución en la porosidad corresponde a un aumento en T_g. Al final del proceso de secado, (X/X₀ = 0.038), T_g tuvo valores de 65.51, 62.00 y 59.76 °C y una poro sidad de 0.06, 0.09 y 0.14 para muestras deshidratadas a 40, 50 y 60 °C r espectivamente. Estos resultados confirman la explicación propuesta por Kasapis y col., (2007) y Sablani y col., (2007), quienes indicaron que la formación de poros durante la deshidratación afecta irreversiblemente a la estructura celular y está relacionada con la temperatura de transición vítrea.

La pérdida de humedad utilizando perfiles de calentamiento en forma de onda trapezoidal no es uniforme durante el proceso de secado. En la Figura 28 se observan las cinéticas de secado de los ciclos con periodo de onda de 60 y 160 min del tipo ascendente (A) y descendente (D). El contenido de humedad disminuye más rápido en los ciclos ascendentes que en los ciclos descendentes durante los primeros 130 min. Al incrementarse la temperatura de secado (en el ciclo ascendente de Ta = 40 a Tb= 60 °C durante los primeros 20 minutos) la difusivid ad aumenta, por lo tanto X disminuye más rápidamente. En el ciclo 60A, X sigue la tendencia de la cinética de secado de 60 °C durante los primeros 40 minutos, do nde la temperatura varía de 40 a 60 los primeros 20 minutos, manteniéndose constante a 60 °C otros 10 minutos y posteriormente disminuye a 50 °C en 10 minutos.

Figura 28. (a) Pérdida de humedad y (b) humedad relativa durante el secado de muestras deshidratadas con perfiles de calentamiento trapezoidales A y D.

En los ciclos descendentes, al disminuir la temperatura de 60 a 40 en los primeros 20 minutos, la difusividad efectiva disminuye, por lo tanto la pérdida de agua del material es más lenta y se comporta como la cinética de secado de 40 durante los primeros 90 minutos. Posterior a este tiempo, tanto en A como en D, no es posible diferenciar la pérdida de humedad del ajo con respecto al periodo empleado.

No obstante, durante todo el proceso, el *material alimenticio se adapta a las condiciones del proceso*, resultados similares fueron encontrados por Chua y colaboradores (2002). En los ciclos descendentes, cuando la temperatura de secado disminuye la humedad relativa aumenta reduciendo la capacidad de remoción de humedad del aire de secado. Caso contrario con los ciclos ascendentes (Figura 28.b). Estos resultados son congruentes con las cinéticas de secado, donde hay momentos

donde X se mantiene casi constante, formando una serie de escalones de X en función de la variación de temperatura del aire de secado.

Figura 29. (a) Pérdida de humedad (dX/dt) y (b) humedad absoluta (H) y teperatura del aire (T_a) durante el secado de muestras deshidratadas con perfiles de calentamiento trapezoidales A y D.

En los primeros 20 minutos la humedad relativa es menor para los ciclos descendentes (D) que para los ciclos ascendentes (A) y la velocidad de pérdida de humedad es mayor D que para A. Sin embargo, posterior a este tiempo la velocidad de pérdida de humedad es mayor para A que para D. Esto se refleja en la humedad absoluta del sistema, hay mayor humedad en el ambiente en los ciclos ascendentes (A) que para los ciclos descendentes (D) puesto que se retiro menor cantidad de agua de las hojuelas de ajo en los A que en los D (Figura 29). Esto es congruente con la humedad relativa y las cinéticas de secado. Además, la velocidad de secado con A es mayor en la primera parte del secado que con D y la variación de dX/dt concuerda con las variaciones de temperatura, humedad absoluta y relativa del sistema. Por lo tanto se concluye que las muestras eliminan agua de acuerdo a las condiciones del sistema creadas por la variación de temperatura. El tiempo de secado no es significativamente diferente con respecto al programa de secado no isotérmico empleado (López, 2006).

4.2.1. Propiedades estructurales del ajo durante el secado noisotérmico

Los datos experimentales (2007) y calculados (ecuaciones 12, 51 y 52, con datos del 2006) de densidad real (ρ_p) con respecto al contenido de humedad se muestran en la Figura 30. Los valores calculados de ρ_p se ajustan adecuadamente a los datos experimentales. Con esto, se ratifica que ρ_p es función de las condiciones de secado y contenido de humedad.

Al igual que en el secado a temperatura constante, se observa una tendencia global (sin considerar las variaciones cíclicas, únicamente máximos). ρ_p varía casi linealmente desde 1214 hasta aproximadamente 1600 kg/m³ con respecto a la disminución del contenido de humedad (X) de 1.83 hasta 0.4 kg_{agua}/kg_{ss} aproximadamente. Posterior a este valor, se observó un cambio en la tendencia ρ_p disminuyó desde aproximadamente 1600 a 1200 kg/m³ en función de la temperatura del aire de secado (T_a) y el contenido de humedad. Por lo anterior, se concluye que es posible observar el cambio de fase de segundo orden en muestras deshidratadas con temperatura cíclica, la cual, ocurre en un rango de X desde 0.4 hasta valores cercanos a X=0. El comportamiento de ρ_p durante los primeros 60 minutos es lineal debido a que la pérdida de humedad es lineal en este periodo de tiempo.

Figura 30. Comparación de la temperatura del aire de secado con la densidad real experimental y calculada con las ecuaciones 12, 51 y 52, (a) Ciclo descendente (D), periodo 60 min. b) Ciclo desscendente (D), periodo 160 min. c) Ciclo ascendente (A), periodo 80 min. d) Ciclo ascendente (A), periodo 120 min.

Nótese que ρ_p adquiere valores cercanos a los obtenidos de muestras deshidratadas a temperatura constante cuando la temperatura del aire de secado es

Figura 31. Densidad real calculada con las ecuaciones 12, 51 y 52, (a) Ciclo descendente (D) periosdos 160 y 80 min. b) Ciclos ascendente (A) y descendente (D) del periodo 120 min.

Debido al buen ajuste de las ecuaciones 12, 51 y 52 a los datos experimentales, en la Figura 31 se observan las comparaciones de las curvas obtenidas de ρ_p . En la comparación de periodo de onda (ej. 60 min y 160 min) con respecto al ciclo A ó D, se encontró que ρ_p aumenta por primera vez a contenidos de humedad más bajos con los ciclos A. Estadísticamente el tipo de secado (ciclo ascendente: A, ciclo descendente: D) afecta significativamente a la densidad real. Este efecto se debe a que en la primera parte del secado, la fuerte influencia de la pérdida

de humedad en densidad es la que afecta el comportamiento de la tendencia. Y la pérdida de agua es mayor a temperaturas altas.

La variación de ρ_p con respecto al periodo de onda es cíclica, debido al efecto de las condiciones de secado. Sin embargo, estadísticamente el periodo de onda no influye en el valor de la densidad real.

Figura 32. Comportamiento de densidad aparente durante el proceso de secado con perfiles de calentamiento en forma de onda trapezoidal ascendente (A) ó descendente (B) y con diferentes periodos de onda (60, 80,120 y 160)

Los datos experimentales de densidad aparente (p_b) con respecto al contenido de humedad se muestran en la Figura 32. Se puede observar que la dispersión de los datos y experimentales es amplia, sin embargo, no puede concluirse que es producto de una mala experimentación. En base a los resultados obtenidos a temperatura constante, se puede afirmar que las pequeñas variaciones de contenido de contenido de humedad y volumen del material durante el proceso de secado son suficientes para influir en los valores de densidad aparente. En el secado a condiciones variables, donde los cambios en el contenido de humedad son función de la temperatura y humedad relativa del aire de secado, se esperaría que las variaciones de densidad también sigan una trayectoria cíclica similar a la de la temperatura de secado.

Sin embargo, con el número de datos reportados en el presente trabajo y las deficientes ecuaciones para describir la densidad en función de las condiciones del proceso reportadas hasta el momento no es posible concluir que la densidad aparente no es influenciada por las condiciones cíclicas de temperatura del aire secado.

Ahora bien, se puede obtener una línea de tendencia similar a las encontradas en la literatura. Sin embargo, la ecuación obtenida despreciaría los efectos de las condiciones de secado. Consecuentemente, no es posible comparar entre el tipo de ciclo (A ó D) puesto que no es clara la tendencia (Figura 33). En investigaciones posteriores, es necesario planear una experimentación cuidadosa, en la cual, la extracción de muestras deberá realizarse cada 15 minutos durante las primeras dos horas del secado y posteriormente cada 30 minutos hasta terminar el secado para tener los datos suficientes y así obtener una tendencia.

Figura 33. Comparación del comportamiento de densidad aparente durante el proceso de secado entre los ciclos de calentamiento en forma de onda trapezoidal ascendente (A) ó descendente (B).

En la Figura 34 se observa la variación de porosidad del ajo durante el proceso de secado con perfiles de calentamiento A y D, a diferentes periodos de onda (60, 80, 120 y 160 min). Al igual que en el secado a temperatura constante, en las muestras deshidratadas con perfiles no isotérmicos se considera que la porosidad depende del contenido de humedad inicial del material, la composición y tamaño de la muestra alimenticia, las condiciones de secado: temperatura, humedad relativa y velocidad de aire.

Figura 34. Comportamiento de la porosidad del ajo deshidratado con perfiles de calentamiento en forma de onda trapezoidal ascendente (A) ó descendente (D) y con diferentes periodos de onda a) 160, b) 120, c) 80 y d) 60.

Figura 35. Temperatura de transición vítrea del ajo deshidratado con perfiles de calentamiento Constante (C), en forma de onda trapezoidal ascendente (A) ó descendente (D) y con diferentes periodos de onda (160 y 60)

Capítulo IV. Resultados

En la Figura 34 se observa la misma tendencia en porosidad, sin importar el tipo de ciclo (A ó D) ó periodo de onda, que en muestras deshidratadas a temperatura contante. Donde, durante la primera parte del proceso la formación de poros se incrementa hasta alcanzar un valor crítico, es cual, es seguido por un colapso ocasionado por la pérdida de agua y el estrés del material.

4.2.2. Temperatura de transición vítrea

En la Figura 35 se puede observar que la tendencia de la temperatura de transición vítrea para el ciclo 60A es similar a la tendencia de 60 $^{\circ}$ C y la tendencia de T_g para 60D es similar la tendencia de T_g para 40 $^{\circ}$ C. Esto, es congruente con la perdida de contenido de humedad de las muestras deshidratadas con perfiles de calentamiento cíclicos, para los A es mayor que la pendiente para los D.

Figura 36. Temperatura de superficie, temperatura interna, temperatura de transición vítrea y pérdida de humedad de muestras deshidratadas con perfiles de calentamiento trapezoidales A y D con diferentes periodos de onda 60 (a), 80 (b), 120 (c) y 160 (d).

En la Figura 36 se puede observar la intesección de la temperatura de transición vítrea (T_g) con la temperatura interna (T_i) y la temperatura de superficie (T_s) de las rebanadas de ajo. El cambio de fase, indicado por un punto crítico donde $T_i \cong T_s \cong T_g$, en lo ciclos ascendentes (A) se presentó en un tiempo menor con respecto a la disminución del periodo de onda. En los ciclos descendentes (D), el cambio de fase fue identificado en un tiempo menor con respecto a un incremento del periodo de onda. Es decir, habrá un momento donde si se sigue disminuyendo el periodo de onda en los ciclos ascendentes y se aumenta el periodo de onda de los ciclos descentes podrían cruzarse las tendencias (Tabla X).

Programa de secado	Tց (℃)	T₅ (⁰C)	T _i (°C)	Ta (⁰C)	t _{secado} (min)	X (kg _{agua} /kg _{ss})
C03	40.050	40.0	40.0	40.4	470	0 4470
60ª	42.258	42.6	42.2	42.1	170	0.1170
120 ^a	44.907	40.7	40.5	40.6	200	0.1041 🚽
160A*	46.395	59.6	59.3	60.7	240	0.0994
60D*	34.118	59.7	59.2	61.4	300	0.1002
120D	45.821	41.9	42.4	41.9	260	0.0846
160D	39.537	39.7	39.6	40.5	195	0.1174

Tabla X. Valores T_g, T_s, T_i, T_a y t de cada programa de secado no isotérmico de muestras hojuelas de ajo.

En la Tabla X se observa cuando el tiempo en el cual la temperatura de superficie y la temperatura interna están por debajo de la temperatura de transición vítrea para cada programa de secado. Pare el caso de 160A y 60D la curva de T_g nunca interseca a las curvas de T_i y T_s . Esto se debe a que la temperatura se incrementa de 40 a 60 °C en los primeros 20 minutos y posterior a ello se mantiene en 60 °C otros 60 minutos, en total son 80 minutos en los cuales el contenido de humedad desciende rápidamente. Después, la temperatura baja a 40 °C, manteniéndose constante por 60 minutos; de acuerdo a Bai y colaboradores (2002), el agrietamiento puede presentarse en la última parte del secado (a contenidos de humedad bajos) donde el estrés debido al gradiente de concentraciones es muy grande y es exacerbado por el incremento de la temperatura de secado (Rahman y col., 2002). Por lo tanto, a 40 °C se le permite al material relajarse, después de haber estado en un estrés mayor debido a la temperatura, y continuar perdiendo humedad. Al incrementar nuevamente la temperatura del aire de secado de 40 °C a 60°C, permite al material alejarse de la temperatura de transición vítrea.

En el caso del ciclo 60D, la temperatura varía rapidamente, solo se mantiene constante 10 minutos. Por lo que el material tambien se aleja de la temperatura de transición vítrea cuando la temperatura se incrementa de 40°C a 60°C. Para la deshidratación de ajo, se recomiendan ciclos de temperatura descendentes con periodo de onda cortos.

5. CONCLUSIONES

Las mediciones y el cálculo de densidad real (ρ_p), densidad aparente (ρ_b), porosidad (ϵ), temperatura de transición vítrea (T_g), temperatura en la superficie (T_s) y en el interior (T_i) de hojuelas de ajo, contenido de humedad (X), difusividad efectiva (D) y agrietamiento durante el secado isotérmico (40, 50 y 60°C) y no-isotérmico (con perfiles de calentamiento en forma de onda trapezoidal con diferentes periodos de onda: 60, 80, 120 y 160 min) permitieron evaluar el deterioro de la calidad del ajo y obtener ecuaciones que describan el cambio en las propiedades estructurales durante el proceso de secado.

Se encontró que ρ_b , ρ_p , ϵ , y D son función de la temperatura del aire de secado, contenido de humedad y de la fase en la que se encuentra el material. Se encontró un punto crítico en la intersección de T_i, T_s, y T_g; este punto se identificó como un cambio de fase de segundo orden. Este cambio de fase de segundo orden fue asociado al cambio de pendiente en la tendencia de las propiedades estructurales (ρ_b , ρ_p y ϵ). Un cambio de tendencia en la porosidad (ϵ) con respecto al contenido de humedad, fue particularmente drástico a altas temperaturas de secado y bajos contenidos de humedad. Los datos experimentales de ρ_b , ρ_p y ϵ se ajustaron apropiadamente (R² > 0.85) a una ecuación no lineal de tres términos exponenciales. La densidad real durante el proceso de secado fue posible predecirla con un modelo semi-empírico, con una R² = 96.34 en comparación con los datos experimentales.

Los análisis de las micrografías confirmaron que la porosidad y densidad al final del proceso de secado están relacionadas con el agrietamiento de la estructura celular. La difusión (D), fue consistente con los resultados de densidad, porosidad y temperatura de transición vítrea observados durante el proceso de secado. Estos resultados indican que la composición química, estructura y arreglo celular de las muestras al final del proceso de secado son diferentes a los originales en muestras frescas.

La densidad aparente y porosidad varían significativamente (α =0.05) con relación al periodo de onda de los perfiles trapezoidales de calentamiento durante el secado, a mayor periodo de onda menor densidad aparente y menor porosidad. La densidad real no varía significativamente con el incremento de periodo de onda, el modelo semi-empírico para predecir el cambio en el valor numérico de la densidad real

para condiciones constantes fue capaz de describir los cambios en ρ_p durante el proceso de secado con perfiles de calentamiento no-isotermico.

Recomendaciones

En trabajos futuros se recomienda utilizar una ecuación para calcular ρ_b en función de las densidades del sólido, densidad del agua, volumen del aire, contenido de humedad y temperatura del aire de secado. El volumen del aire podría ser calculado con una ecuación de regresión o bien un modelo que describa el comportamiento de la porosidad de los materiales alimenticios.

Es necesario planear una experimentación cuidadosa, en la cual, la extracción de muestras deberá realizarse cada 15 minutos durante las primeras dos horas del secado y posteriormente cada 30 minutos hasta terminar el secado para tener los datos suficientes y así obtener una tendencia en densidad aparente.

6. BIBLIOGRAFÍA.

Aguilera, J.M. y Stanley, D.W. (1999) Microstructural principles of food processing and engineering. *Elsevier Applied Science,* London and New York, 343

Aguilera J.M., Chiralt, A. and Fito, P. (2003) Food dehydration and product structure. *Trends in Food Science & Technology*, vol. 14, 432–437.

Aguilera, J. M. (2003) Drying and Dried Products Under the Microscope. *Food Science Technology International*, vol. 9 (3), 137-143.

Amagase, H., Petesch, B.L., Matsuura, H., Kasuga, S. and Itakura, Y. (2001) Intake of garlic and its bioactive components. *The Journal of Nutrition*, 131, 955S-962S.

- Amagase, H. (2006) Clarifying the real bioactive constituents of garlic. *The Journal of Nutrition*, 136, 716S-725S.
- Attanasio, G., Cinquanta, L., Albanese, D., Matteo, M. (2004) Effects of drying temperatures on physic-chemical properties of dried and rehydrated chestnuts (Castanea sativa). *Food Chemistry*, *88*, 583–590
- Aversa, M., Curcio, S., Calabro, V. y Lorio, G. (2007) An analysis of the transport phenomena occurring during food drying process. *Journal of Food Engineering*, 78, 922–932
- Bai, Y., Rahman, S., Perera, C.O., Smith, S. y Melton, L.D. (2002) Structural changes in apple rings during convection air-drying with controlled temperature and humidity. *Journal of Agricultural and Food Chemestry*, 50, 3179-3185.
- Bhagyalakshmi, N., Thimmaraju, R., Venkatachalam, L., Chidambara Murthy, K. N., Sreedhar, R.V, (2005) Nutraceútical applications of garlic and intervention of biotechnology. *Critical Reviews in Food and Nutrition*, 45, 607-621.
- Block, E. (1985) The chemistry of garlic and onions. *Scientific American*, 252 (3), 114–119.
- Boukouvalas, Ch. J., Krokida, M.K. Maroulis, Z.B. y Marinos-Kouris, D. (2006) Effect of material moisture content and temperature on the true density of foods. *Journal of Food Properties*, *9*, 109-125.

- Couchman, P.R., Karasz, F.E. (1978) A classical thermodynamic discussion of the effect of composition on glass transition temperatures. *Macromolecules*, *11*, 117–119
- Chua, K.J., Ho, J.C., Chou, S.K., Mujumdar, A.S., Hawlader, M.N.A. (2002) Analytical Study Of Cyclic Temperature Drying: Effect On Drying Kinetics And Product Quality. *Journal of Food Engineering*, *51*, 65-75.
- Chiralt, A., Moraga, G. y Martínez-Navarrete, N. (2004) Water sorption isotherms and glass transition in strawberries: influence of pretreatment. *Journal of Food Engineering*, *62*, 315–321
- Choi, Y. y Okos, M. R. (1986) Effects of temperature and composition on the thermal properties of foods. In M. Le Maguer & Jelen (Eds), food engineering and Process applications, Vol. 1: Transport Phenomena. New York Elsevier.

Crank, J. y Park, G.S. (1968) Diffusion in Polymers. Academic Press, New York.

Cui, Z.W. Xu, S.Y. y Sun, D.W. (2003) Dehydration of garlic slices by combined microwave-vacuum and air drying. *Drying Technology*, *21*, 1173–1184.

Doymaz, I., y Pala, M. (2002) The effects of dipping pretreatments on air-drying rates of the seedless grapes. *Journal of Food Engineering*, *52*(4), 413-417.

- Eccles, C.D., Callaghan, P.T., y Jenner, C.F. (1988) Measurement of the self-diffusion coefficient of water as a function of position in wheat grain using nuclear magnetic resonance imaging. *Biophysics. J.*, *53*, 75.
- Ehrenfest, P. (1933) Phase Changes in the Ordinary and Extended Sense Classified According to the Corresponding Singularities of the thermodynamic Potential. *Proc. Acad. Sci. Amsterdam*, *36*, 153-157.
- Fenwick, G. R. y Hanley, A. B. (1985) The genus Allium: part 2, CRC Critical Reviews in Food Science and Nutrition, 22(4), 285-286
- Fuentes, T.F.J., Silva G.J.A. y Montes R. (1996) Manual Del Secado Técnico Convencional De La Madera. *Libro Uag*, 7-57
- Franklin R.E. (1948) A note on the true density, chemical composition, and structure of coals and carbonizes coals. *Fuel, 27*, 46-49.

Gabas, A. L., Marra-Júnior, W. D., Telis-Romero, J. y Telis, V. R. N. (2005) Changes

of density, thermal conductivity, thermal diffusivity, and specific heat of plums during drying. *International Journal of Food Properties*, *8*, 233–242.

- Gordon, M y Taylor, J.S. (1952) Ideal copolymers and the second order transitions of synthetic rubbers. I. No crystalline copolymers. *Journal Appl. Chemistry*, 2, 493–500.
- Gros, J.B. y Ruegg, M. (1987) Determination of apparent diffusion coefficient of sodium chloride in model foods and cheese. In Physical Properties of Foods-2, R. Jowitt y col. (Eds.), Elsevier, London, 71–108.
- Hendrickx, M., Van den Abeele, C., Engels, C., y Tobback, P. (1986) Diffusion of glucose in carrageen and gels. *Journal of Food Science*, *51*(6):1544-1546.
- Hernández, J.A., Pavón, G. y García, M.A. (2000) Analytical solution of mass transfer equation considering shrinkage for modeling food-drying kinetics. *Journal of Food Engineering*, *45*, 1-10
- Jones, M.G., Hughes, J., Tregova, A., Milne, J., Tomsett, A.B. y Collin, H. A. (2004) Biosynthesis of the flavor precursors of onion and garlic. *Journal of Experimental Botany*, 55 (404), 1903-1918.
- Kataranos, V.T., Villalobos, G. y Saravacos, G.D. (1990) Comparison of two methods of estimation of the effective moisture diffusivity from drying data. *Journal of Food Science*, *5*(1), 219-233.
- Kasapis, S, Rahman, M.S., Al-Marhubi, I.M. y Al-Mahroqi, A., (2007) Measurement of glass transition temperature by mechanical (DMTA), thermal (DSC and MDSC), water diffusion and density methods: A comparison study. *Chemical Physics Letters*, *440*, 372-377.
- Katkov, I.I. y Levine, F. (2004) Prediction of the glass transition temperature of water solutions: comparison of different models. *Cryobiology*, 49, 62-82
- Khalloufi, S., Almeida-Rivera, C. y Bongers, P. (2009) A Theoretical Model and its Experimental Validation to Predict the Porosity as Function of Shrinkage and Collapse Phenomena During Drying. *Journal of Food Research International*, *42*, 1122-1130
- Khalloufi, S., Almeida-Rivera, C. y Bongers, P. (2010) A fundamental approach and its experimental validation to simulate density as a function of moisture content during drying processes. *Journal of Food Engineering*, *97*, 177-187

King, J. C. Separation process, McGraw-Hill, New York 1980.

- Krokida, M.K. y Maroulis, Z.B. (2000) Quality changes during drying of food materials. En: Editor, A.S. Mujumdar, Drying technology in agricultural and food sciences, Science Publishers, Enfield (2000), 61–106.
- Krokida, M.K.; Maroulis, Z.B. (2001) Quality changes during drying of food materials. In Drying Technology in Agriculture and Food Sciences; Mujumdar, A.S., Ed; Oxford IBH: Delhi, India, 61–105.
- Krokida, M.K. y Philippopoulos, C. (2005) Rehydration of dehydrated foods. *Drying Technology*, 23, 799-830.
- Lanzotti, V (2006) The analysis of onion and garlic. *Journal of Chromatography A.*, 1112, 3-22.
- Lawson, L.D. (1993) Bioactive organosulfur compounds of garlic and garlic products: role in reducing blood lipids In: Kinghorn, A.D. and Balandrin, M.F., Editors. Human Medicinal Agents from Plants, American Chemistry Society, Washington, DC, 306–330.
- Levi, G. y Karel, M. (1995) Volumetric shrinkage (collapse) in freeze dried carbohydrates above their glass transition temperature. *Food Research International*, *28*(2). 145-151.
- Levine, H. y Slade, L. (1991). Water Relationships in Foods: advances in the 1980s and trends for the 1990s. Plenum Press, New York.
- Lin, T.M., Durance, T.D. y Scaman, C.H. (1998). Characterization of vacuum microwave air and freeze dried carrot slices. *Food research International, 4*, 111-117
- Liu, H., Zhou, L. y Hayakawa, K. (1997) Sensitivity analysis for hygrostress crack formation in cylindrical food during drying. *Journal of Food Science.* 62, 447-450.
- López, O.A. (2006) La temperatura de transición vítrea en el secado convectivo con condiciones variables de ajo (Allium sativum, L.). Tesis de maestría, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, México. 144
- López-Toledo, M.J (2008) Algoritmo para el control de condiciones variables en un secador. Tesis de maestría, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, México.
- Lozano, J.E., Rostein, E. y Urbicain, M. J. (1983) Shrinkage, porosity and bulk density of foodstuffs at changing moisture contents. *Journal of Food Science*, *48*,

1497-1553.

- Luikov, A.V. (1968). Analytical Heat Diffusion Theory. Academic Press, New York, USA
- Madiouli, J., Lecomte, D., Nganya, T., Chavez, S., y Sghaier, J., (2007) A method for determination of porosity change from shrinkage curves of materials. *Drying Technology*, *25*, 621-628.
- Madamba, P.S., Driscoll, R. H. and Buckle, K.A. (1994) Shrinkage, density and porosity of garlic during drying. *Journal of Food Engineering*, 23, 309-319.
- Martínez-Navarrete, Andrés, A., Chiralt, A., y Fito, P. (1999) Termodinámica y cinética de sistemas : alimento entorno. Instituto Politécnico Nacional, México
- Marousis, S.N. y Saravacos, G.D. (1990) Density and porosity in drying starch materials. *Journal of Food Science*, 55 (5), 1367-1372
- Maroulis, Z.B y Saravacos, G.D. (2003) Food process design, Marcel-Deker. New York, 498
- Marinos-Kouris, D. y Maroulis Z.B. (2006) Transport Properties in the Drying of Solids. Capítulo 4, Parte I, Hand book of Industrial Drying, Tercera edicion, CRC Press, NW, pp 1280
- Martynenko, A. (2008) The System of Correlations Between Moisture, Shrinkage, Density, and Porosity. *Drying Technology*, *26*, 1497–1500.
- Méndez-Lagunas, L.L., Castaigne, F. (2008) Effect of temperature cycling on allinase activity in garlic. *Food Chemistry*, *111*, 56-60
- Mittal, G. S. (1999). Mass diffusivity of food products. *Food Review International*, *15*(1), 19 66.
- Monteau, J., Hamdami, N. and Bail, A. L. (2004) Transport properties of a high porosity model food at above and sub-freezing temperatures. Part 2: Evaluation of the effective moisture diffusivity from drying data. *Journal of Food Engineering*, 62, 385–392.
- Moreira, R., Figueiredo, A. y Sereno, A. (2000) Shrinkage of Apple Disks during Drying by Warm Air Convection and Freeze Drying. Drying Technology, *18* (1&2), 279-294.

- Mott, R. L. y Brito J.E. (2006) Mecánica de fluidos, México, sexta edición Prentice-Hall.
- Mohr, H. y Schopfer, P. (1995) Plant physiology. Springer-Verlag, Berlin Heidelberg New York, 629.
- Mujumdar, A.S. (2006) Hand book of Industrial Drying, Tercera edicion, CRC Press, NW, 1280
- Mujumdar, A.S., Chua, K.J., Chou, S.K., Ho, J.C. y Hawlader, M.N.A. (2000) Cyclic air temperature drying of guava pieces: effects on moisture and ascorbic acid contents. *Institution of Chemical Engineers*, *78*, Part C, 72-78
- Naesens, W., Bresseleers, G., y Tobback, P., (1981) A method for the determination of diffusion coefficients of food component in low and intermediate moisture systems. *Journal of Food Science, 46*, 1446.
- Perry, R.H. y Green (2001) Manual del Ingeniero Químico McGraw-Hill, México, sexta edición.
- Pezzutti, A. y Crapiste, G. H. (1997) Sorptional Equilibrium and Drying Characteristics of Garlic. *Journal of Food Engineering*, *31*, 113-123
- Piotrowski, D. y Lenart, A. (1998) The Influence Of Constant And Variable Conditions On The Drying Kinetics Of Apples. *Drying Technology*, *16* (5), 761 -778
- Prachayawarakorn, S.; Kaewnin, K.; Nathakaranakule, A.; Soponronnarit, S. (2006) Effects of Peeled and Unpeeled Garlic Cloves on the Changes of Drying Rate and Quality. *Drying Technology*, 24, 65-75

Rahman, M.S. (1995) Food Properties Handbook. New York. CRC Press.

- Rahman, M. S., Perera, C. O., Chen, X. D., Driscoll, R. H. y Potluri, P. L. (1996) Density, Shrinkage and Porosity of Calamari Mantle Meat during Air Drying in a Cabinet Dryer as a Function of Water Content. *Journal of Food Engineering*, *30*, 135 – 145.
- Rahman, M. S. (1999) "Glass Transition and Other Structural Changes in Foods." *Handbook of Food Preservation,* New York, Ed. Dekker, 75-93.
- Rahman, M.S., Hussain, M.A. y Ng, C.W. (2002) Prediction of Pores Formation (Porosity) in Foods During Drying: Generic Models by the Use of Hybrid Neural Network. *Journal of Food Engineering*, *51*, 239-248

- Rahman, M.S., Al-Amri, O.S. y Al-Bulushi, I.M. (2002) Pores and physic-chemical characteristics of dried tuna produced by different methods of drying. *Journal of Food Engineering*, *53*, 301-313.
- Rahman, S. M., Bai, Y., Perera, C.O., Smith, B. y Melton, L.D., (2002), Structural Changes in apple rings during convection air-drying with controlled temperature and humidity. *Journal of Agricultural Food Chemistry*, *50*, 3179-3185.
- Rahman, M.S., Al-Marhubi, I.M., Al-Mahrouqui, A., (2007) Measurement of glass transition temperature by mechanical (DMTA), thermal (DSC and MDSC), water diffusion and density methods: a comparison study. *Chemical Physics Letters*, *440*, 372–377.
- Rodriguez-Ramírez, J. (1998) Modelamiento del Transporte de Humedad en Bagazo de Caña. Tesis de doctorado, Instituto Tecnológico de Celaya, México, 147.
- Rodríguez-Rámirez, J.; Méndez-Lagunas, L.; Martínez-Álvarez, C.; Diego-Nava, F. (2001) A closed loop tunnel for drying kinetics research, *Inter-American Drying Conference,* Boca del Río, Veracruz, Mexico. 499-504.
- Rodríguez, R.J., López, O.A., Méndez L. L. y Sosa, P.B. (2006) "La Temperatura de Transición Vítrea en el Secado Convectivo de ajo (Allium Sativum, L) con condiciones Variables", XXVII Encuentro Nacional de la AMIDIQ, Ixtapa, Gro.,
- Roos, Y.H. (1987) Effect Of Moisture On The Thermal Behavior Of Strawberries Studied Using DSC. *Journal of Food Science*, *52*, 146
- Sablani, S.S., Rahman, M.S., Al-Kuseibi, M.K., Al-Habsi, N.A., Al-Belushi, R.H., Al-Marhubi, I. y Al-Amri, I.S. (2007) Influence of shelf temperature on pore formation in garlic during freeze drying. *Journal of Food Engineering, 80*, 68-79.
- Sablani, S.S., Kasapis, S. and Rahman, M.S. (2007) Evaluating water activity and glass transition concepts for food stability. *Journal of Food Engineering*, 78, 266–271.
- Sacilik, K. y Unal, G., (2005) Dehydration characteristic of Kastamonu garlic slices. *Biosystems Engineering*, 92 (2), 207-215.
- Schoeber, W.J.A.H. y Thijssen, H.A.C. (1977) A short-cut method for the calculation of drying rates of slabs with concentration dependent diffusion coefficient, *AIChE Symp. Ser.*, 73, 12–24

- Schubert, H. (1987). Food Particle Technology. Part I: Properties of particle and particulate food systems. *Journal of food engineering*, *6*, 1-
- Sereno, A. M. y Mayor, L. (2004). Modeling shrinkage during convective drying of food materials: A review. *Journal of Food Engineering*, *61*, 373–386.
- Sharma, G.P., Prasad, S. (2001) Drying of garlic (Allium sativum) by microwave-hot air combination. *Journal of Food Engineering*, *50* (2), 99-105.
- Slade y Levine (1991) Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. *Journal of food science*, *56*, 38-43.
- Sosa, B (2004) Efecto en el Incremento Escalonado de Temperatura en el Secado y Calidad del Ajo (Allium Sativum). Tesis de licenciatura, Instituto Tecnológico de Oaxaca, México. 162
- Srikiatden, J. y Roberts, J.S. (2008) Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity. *Journal of Food Engineering*, 84, 516-525.
- Susiki, K., Kubota, K., Hasegawa, T. y Hosaka, H. (1976) Shrinkage in dehydration of root vegetables, *J. Food Sience*, 41, 1189-1193.
- Talla, A., Puiggali, J.R., Jomaa, W. y Janno, Y. (2004) Shrinkage and density evolution during drying of tropical fruits: application to banana *Journal of Food Engineering*, *64*, 103–109
- Telis V.R.N., Sobral, P.J.A, (2002) Glass Transitions For Freeze-Dried and Air-Dried Tomato. *Food Research International, 35*, 435–443
- Topp, E.M., Lai, M.C., Hageman, M.J., Schowen, R.L. y Borchardt, R.T., (1999) Chemical Stability of Peptides in Polymers. 1. Effect Of Water On Peptide Dimidiation In Poly(Vinyl Alcohol) And Poly(Vinyl Pyrrolidone) Matrixes. *Journal of Pharm. Science, 88*, 1073–1080
- Velić, D., Planinić, M., Tomas, S. y Bilić M. (2004) Influence of airflow velocity on kinetics of convection apple drying. *Journal of Food Engineering, 64*, 97-102
- Vrentas, J. S., y Duda, J. L. (1978). A free volume interpretation of the influence of the glass transition on diffusion in amorphous polymers. *Journal of Applied Polymer Science*, 22, 2325–2339.

- Wang, N. y Brennan, J.G. (1995) Changes of structure, density and porosity of potato during dehydration. *Journal of Food Engineering*, *24*, 61-76.
- Weaver, G.C., Kotz, J.C. y Treiche, P (2005) Chemestry and chemical reactivity. *Thomson learning. Inc.*, P. 603, 1145.
- Windle, J.J. (1985) An ESR spin probe study of potato starch gelatinization. *Starch*, *37*(4), 121.
- Witaker, S. (1988) Fundamental Principles of Heat Transfer. Florida, Krieger.
- Zogzas N.P., Maroulis Z.B. y Marinos-Kouris D. (1994) Densities, shrinkage and porosity of some vegetables during air drying. *Drying Technology*, *12*, 1653-1666.

7. ANEXOS

Anexo A. Análisis de varianza de propiedades estructurales

Tabla A.1 Análisis de varianza de datos de porosidad del ajo deshidratado a temperatura constante (40, 50 y 60 $^{\circ}$).

FUENTE DE VARIACION	G.L.	SUMA DE CUADRADOS	MEDIA DE CUADRADOS	F	NIVEL DE PROBABILIDAD	POTENCA (Alpha=0.05)
A: Temperatura	2	2.225388E-02	1.112694E-02	13.13	0.000044*	0.995619
B: Tiempo	4	0.1251941	3.129853E-02	36.94	0.000000*	1.000000
AB	8	1.999831E-02	2.499789E-03	2.95	0.011151*	0.907092
S	39	3.304417E-02	8.472864E-04			
Total (Adjusted)	53	0.2009584				
Total	54					

Tabla A.2 Análisis de Varianza de la densidad real del ajo deshidratado a temperatura constante (40, 50 y 60 $^{\circ}{\rm C})$

FUENTE DE VARIACION	G.L.	SUMA DE CUADRADOS	MEDIA DE CUADRADOS	F	NIVEL DE PROBABILIDAD	POTENCA (Alpha=0.05)
A: Temperatura	2	2.505E-02	1.253 E-02	7.41	0.001620*	0.925762
B: Tiempo	4	0.1644633	4.112E-02	24.33	0.000000*	1.000000
AB	8	2.893E-02	3.616E-03	2.14	0.050752	0.784766
S	46	7.773E-02	1.690E-03			
Total (Adjusted)	60	0.2999				
Total	61					

Tabla A.3 Análisis de varianza de la densidad aparente del ajo deshidratado a temperatura constante (40, 50 y 60 $^{\circ}{\rm C}$)

FUENTE DE VARIACION	G.L.	SUMA DE CUADRADOS	MEDIA DE CUADRADOS	F	NIVEL DE PROBABILIDAD	POTENCA (Alpha=0.05)
A: Temperatura	2	5.934E-03	2.967E-03	3.31	0.044520*	0.601966
B: Tiempo	4	0.578	0.144	160.9	0.000000*	1.000000
AB	8	2.527E-02	3.158E-03	3.52	0.002545*	0.963610
S	52	4.667E-02	8.976E-04			
Total (Adjusted)	66	0.660				

Anexo B. Pruebas previas al análisis de varianza

Densidad real

Tabla B.1. Resultados del análisis de normalidad	l para los datos de densidad real
--	-----------------------------------

Nombre de la Prueba	Valor de la prueba	Nivel de probabi	Valor crítico 10%	Valor crítico 5%	Decisión (0.05)
Martinez-Iglewicz	0.9707		1.0347	1.0548	Can't reject normali
D'Agostino Skewness	2.2998	2.1462E-02	1.645	1.960	Reject normality
D'Agostino Kurtosis	-1.2903	0.1969	1.645	1.960	Can't reject normali
D'Agostino Omnibus	6.9538	0.0309	4.605	5.991	Reject normality

Densidad aparente

Tabla B.3. Resultados del análisis de normalidad para los datos de densidad aparente

Nombre de la Prueba	Valor de la prueba	Nivel de probabilidad	Valor crítico 10%	Valor crítico 5%	Decisión (0.05)
Martinez-Iglewicz	1.004885		1.037853	1.059532	Can't reject normali
Kolmogorov-Smirnov	0.1158511		0.068	0.075	Reject normality
D'Agostino Skewness	-3.089033	2.008E-03	1.645	1.960	Reject normality
D'Agostino Kurtosis	-2.4058	0.016137	1.645	1.960	Reject normality
D'Agostino Omnibus	15.3300	0.000469	4.605	5.991	Reject normality

Porosidad

Tabla B.4. Resultados del análisis de normalidad para los datos de porosidad

Nombre de la Prueba	Valor de la prueba	Nivel de probabilidad	Valor crítico 10%	Valor crítico 5%	Decisión (0.05)
Martinez-Iglewicz	0.9504497		1.045894	1.071682	Can't reject normali
Kolmogorov-Smirnov	0.1391028		0.076	0.083	Reject normality
D'Agostino Skewness	2.088602	0.0367436	1.645	1.960	Reject normality
D'Agostino Kurtosis	-4.2413	0.000022	1.645	1.960	Reject normality
D'Agostino Omnibus	22.3510	0.000014	4.605	5.991	Reject normality

Tabla B.5. Prueba de homogeneidad de varianzas, considerando los 40 grupos diferentes del diseño experimental, de la densidad real, aparente y porosidad.

Variable	Levine Modification			Cochran			
	Valor de	/alor de Nivel de Desición		С	Valor de	Desición	
	la probe	probabilidad	(0.05)	Encontrado	C(K, α,ν)	(0.05)	
Densidad real	1.4657	0.062029	Accept	0.1657	0.0787	Reject	
Densidad aparente	1.0040	0.477907	Accept	0.1523	0.0787	Reject	
Porosidad	1.3825	0.116260	Accept	0.0000	0.0787	Accept	

* k = 40 grupos

$$\alpha = 0.05$$

$$v = n - 1 = 3$$

Tabla C.1. Análisis de varianza de datos de densidad real de muestras deshidratadas con perfiles de calentamiento cíclicos.

FUENTE DE VARIACION	G.L.	SUMA DE CUADRADOS	MEDIA DE CUADRADOS	F	NIVEL DE PROBABILIDAD	POTENCA (Alpha=0.05)
A: CICLO	1	4.127857E-02	4.127857E-02	11.25	0.001023*	0.914791
B: PERIODO	3	1.173789E-02	3.912631E-03	1.07	0.365618	0.283997
AB	3	9.821992E-03	3.273997E-03	0.89	0.446991	0.241586
C: TIEMPO	4	0.5082329	0.1270582	34.62	0.000000*	1.000000
S	142	0.5211862	3.670326E-03			
Total (Adjusted)	153	1.08645				
Total	154					

Tabla C.2. Análisis de varianza de datos de densidad real anhidra de muestras deshidratadas con perfiles de calentamiento cíclicos.

FUENTE DE VARIACION	G.L.	SUMA DE CUADRADOS	MEDIA DE CUADRADOS	F	NIVEL DE PROBABILIDAD	POTENCA (Alpha=0.05)
A: CICLO	1	0.1856501	0.1856501	23.22	0.000004*	0.997640
B: PERIODO	3	4.930216E-02	1.643405E-02	2.06	0.108899	0.517951
AB	3	1.325176E-02	4.417255E-03	0.55	0.647354	0.161601
C: TIEMPO	4	1.226455	0.3066137	38.34	0.000000*	1.000000
S	142	1.135521	7.996623E-03			
Total (Adjusted)	153	2.594863				
Total	154					

Tabla C.3. Análisis de varianza de datos de densidad aparente de muestras deshidratadas con perfiles de calentamiento cíclicos.

FUENTE DE VARIACION	G.L.	SUMA DE CUADRADOS	MEDIA DE CUADRADOS	F	NIVEL DE PROBABILIDAD	POTENCA (Alpha=0.05)
A: CICLO	1	3.139879E-02	3.139879E-02	29.06	0.000000*	0.999651
B: PERIODO	3	1.431838E-02	4.772794E-03	4.42	0.005432*	0.866636
AB	3	2.645595E-02	8.81865E-03	8.16	0.000051*	0.990586
C: TIEMPO	4	0.7018501	0.1754625	162.41	0.000000*	1.000000
S	128	0.1382833	1.080339E-03			
Total (Adjusted)	139	0.8774596				
Total	140					

FUENTE DE VARIACION	G.L.	SUMA DE CUADRADOS	MEDIA DE CUADRADOS	F	NIVEL DE PROBABILIDAD	POTENCA (Alpha=0.05)
A: CICLO	1	9.060973E-03	9.060973E-03	6.05	0.015650*	0.682809
B: PERIODO	3	2.333712E-02	7.779039E-03	5.19	0.002255*	0.916518
AB	3	1.263954E-02	4.213179E-03	2.81	0.043247*	0.660842
C: TIEMPO	4	0.2418442	6.046104E-02	40.36	0.000000*	1.000000
S	99	0.1482995	1.497975E-03			
Total (Adjusted	110	0.4582025				
Total	111					

Tabla C.3. Análisis de varianza de datos de porosidad de muestras deshidratadas con perfiles de calentamiento cíclicos.

Anexo D. Cálculo de los coeficientes convectivos de transferencia de masa y calor

Las correlaciones que se utilizaron para cada coeficiente son las siguientes.

Para calor

$$\overline{Nu} = \frac{h_{H}.l}{k_{a}} = 0.664 Re^{1/2} \cdot Pr^{1/3} \qquad \text{Pr} \ge 0.6$$
(53)

Análogamente (masa)

$$\overline{Sh} = \frac{h_m . l}{D_{ab}} = 0.664 R e^{1/2} \cdot S c^{1/3} \qquad \text{Sc} \ge 0.6$$
(54)

Los números de Reynolds, Prandalt y Schmid fueron calculados como sigue:

$$Pr = \frac{Cp_{ah}.\mu_a}{K_a} \qquad Re = \frac{l.v.\rho_a}{\mu_{ah}} \qquad Sc = \frac{\mu_{ah}}{\rho_{ah}.D_{ab}}$$
ndalt
$$h_H = \frac{K_a.Nu}{l} \qquad h_M = \frac{D_{ab}.Sh}{l}$$

Para Prandal

$$ka = 7.064.10^{-5} + \frac{Tpro}{K} 0.005218$$
$$\mu_a = -8.133 \times 10^{-13} (Tpro_i)^3 + 1.028 \times 10^{-9} (Tpro_i)^2 - 3.892 \times 10^{-7} (Tpro_i) + 6.605 \times 10^{-5}$$

$$Cp_{w} = \frac{33.46 + 0.00688T pro_{i} + 7.604 * 10^{-6} (T pro_{i})^{2} - 3.593 * 10^{-9} (T pro_{i})^{3}}{0.018016}$$

$$Cp_{a} = \frac{28.09 + 0.001965T pro_{i} + 4.799 * 10^{-6} (T pro_{i})^{2} - 1.965 * 10^{-9} (T pro_{i})^{3}}{0.029}$$

 $Cp_{ah} = Cp_a + Cp_w H$

Para Schmidt

$$\mu_{aw} = \mu_a \cdot y_a + \mu_w \cdot y_w$$
$$D_{ab} = \frac{2.634}{P} \left(\frac{Tpro}{298K}\right)^{3/2}$$

Anexo E. Productos de Investigación.

- Densidad aparente durante el secado convectivo del ajo (Allium sativum, L.), III Jornadas politécnicas de Investigación, Oaxaca, Oaxaca (2007).
- Evaluación de la densidad real y aparente en el proceso de secado convectivo, a temperatura constante, del ajo (Allium sativum, L.), III Jornadas politécnicas de Investigación, Oaxaca, Oaxaca (2007).
- Densidad y porosidad del ajo (Allium sativum, L.) durante el secado convectivo con perfiles de calentamiento en forma de odas pseudo-cuadradas. XXIX Encuentro Nacional de la AMIDIQ, Puerto Vallarta, Jal. (2008)
- Structural properties of garlic (Allium sativum, L.) during air drying under a trapezoidal temperature-time wave like curve, 3er International Congress Food Science and Food Biotechnology in developing Countries, Queretaró, Qro.
- Comparación de tres métodos para determiación de densidad aparente del ajo (Allium sativum, L.) deshidratado por convección, IV Congreso Nacional Estudiantil de Investigación, Congreso Politécnico de Investigación y IV Jornadas Politécnicas de Investigación, Oaxaca, Oax. (2008).
- Difusividad efectiva, transferencia de calor y temperatura de transición vítrea. XXX Encuentro Nacional de la AMIDIQ, Mazatlán, Sinaloa (2009).
- Effect of drying air temperature on structural properties of garlic. Inter-American Drying Conference (IADC'09) with Overseas Participation World Congress of Chemical Engineering, Montreal, Canadá. (2009)
- Predicción de la densidad real del ajo (Allium sativum, S.) deshidratado por convección. XXII Encuentro Nacional y 1er Congreso Internaciona de la AMIDIQ, Riviera Maya, Qintana Roo. (2011)
- The Effects of Drying Air Temperature on the Structural Properties of Garlic Evaluated During the Drying Process. Journal of Food Properties (en impresión), (2011)
- Effect of Glass Transition on Density Changes of Foodstuffs During the Drying. European Drying Conference, Palma. Balearic Island, Spain (2011)

International Journal of Food Properties

The Effects of Drying Air Temperature on the Structural Properties of Garlic Evaluated During the Drying Process

Journal:	International Journal of Food Properties
Manuscript ID:	LJFP-2011-0084.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	09-Jun-2011
Complete List of Authors:	López Ortiz, Anabel; IPN, CIIDIR-OAXACA RODRIGUEZ RAMIREZ, JUAN; IPN, CIIDIR-OAXACA Méndez Lagunas, Lilia; IPN, CIIDIR-OAXACA
Keywords:	air drying, density, diffusivity, garlic, Gordon-Taylor equation, glass transition, porosity

2		
3 4 5 6	1	Effects of Drying Air Temperature on the Structural Properties of Garlic
7 8	2	Evaluated During Drying
9 10 11	3	
12 13	4	López Ortiz, A. ^{a*} , Rodríguez Ramírez, J. ^a , Méndez Lagunas, L. ^a
14 15 16	5	
17 18	6	^a Instituto Politécnico Nacional, CIIDIR Oaxaca
19 20 21	7	Hornos # 1003, Santa Cruz Xoxocotlán, Oaxaca, C.P. 71230. Mexico
22 23	8	Tel. / Fax: (951) 517 0610 and 517 0400 Ext. 82753.
24 25 26	9	E-mail: ana_l_oz@hotmail.com
27 28 20	10 11	ABSTRACT
29 30 31	12	
32 33 34	13	Second order phase transitions may occur in foodstuffs during the convective drying process.
35 36	14	These transitions involve physicochemical changes, which influence both structural
37 38 39	15	properties and drying behavior. The aim of this study was to examine the effects of drying air
40 41	16	temperature and the second order phase transition of garlic on the changes in particle density,
42 43	17	apparent density, apparent porosity, effective diffusivity, and cracking produced during drving Garlic slices were dehydrated at three air temperatures (40, 50, and 60°C). The
45 46	19	moisture content (X), inside temperature (T_i), surface temperature (T_s), apparent (ρ_b) and
47 48 49	20	particle (ρ_p) densities of garlic slices were measured during drying. Porosity (ϵ) was
50 51	21	calculated based on the data collected for ρ_p and $\rho_b.$ Glass transition temperatures (T_g) and
52 53 54	22	micrographs were obtained for both raw and dehydrated garlic. A critical point in the
55 56 57	23	intersection of T_{i},T_{s} and T_{g} was found; this point was identified as a second order phase

transition. Diffusivity and slope changes in ρ_b , ρ_p and ε with respect to moisture content were found to be related to this critical point. Experimental data for ρ_b , ρ_p and ε was fitted to a non-linear equation with three exponential terms with respect to moisture content, with an R² > 0.85. Less dense products were found to be more porous, with more cracking, higher moisture diffusivity, and lower T_g at the end of the drying process.

Keywords: Particle density, apparent density, apparent porosity, glass transition temperature, microstructure.

INTRODUCTION

New, unconventional drying methods, such as infrared-convective, convective-frying, convective-lyophilization, and non-isothermal^[1] drying processes have shown promising results for minimizing loss of quality in dried foodstuffs. Nevertheless, the effects of the most widely used drying method, convective drying, on the properties of foodstuffs are still not sufficiently understood. Before exploring new, alternative drying methods, it is necessary to fully understand the effects of the most common drying method on certain structural properties that are key in preserving the quality of dried foodstuffs and in minimizing deterioration both during and after processing.

45 During the drying process, water movement may occur through multiple mechanisms coupled 46 with mass and heat transfers. The migration of water from the interior (sub-structures, micro-
domains, and organelles) to the exposed surface of foodstuffs is accompanied by moisture gradients and stress. These gradients produce changes in the original characteristics of the product, such as shrinkage, collapse, case hardening, porosity development, and both internal and external cracking.^[2] Cellular rupture caused by unbalanced stress and moisture gradients can intensify enzymatic and non-enzymatic chemical reactions, forming undesirable or volatile compounds, and causing the loss of valuable components.

As garlic is a biological material highly sensitive to temperature changes, cellular structure is fragmented during the drying process, and vacuolar enzymes are released. These enzymes react with substances contained in the cytoplasm, forming volatile and bioactive compounds.^[3-7] From a technological perspective, it is very important to keep bioactive substances compartmentalized with a minimum amount of cell cracking during drying. In addition, loss of flavor intensity is exacerbated by a high drying temperature.^[8, 9] Changes in structural characteristics (particle density, apparent density, and porosity) have often been attributed exclusively to the effects of a change in moisture content.^[10, 11] Nevertheless, these effects do not sufficiently explain non-lineal density behavior at lower water contents. More recently, Aguilera and Stanley^[12] suggested that this behavior may be the result of the effects of micro structural changes, such as density and porosity, on macro structural quality.

Some authors have found that the particle density of garlic has a linear tendency with regard to water content, ^[10, 11] and a relationship has been found between low density and a large quantity of pores formed during drying.^[13] Several equations have been proposed to describe the behavior

of density during the drying process Lozano, Rostein and Urbicain^[10] correlated the ρ_b , and ρ_p of garlic slices with moisture content as follows:

$$\rho_p = 2.694 - 1.316 \cdot \exp\left(0.1638 \cdot \frac{X}{X_0}\right) \tag{1}$$

$$\rho_b = 1.130 - 0.567 \frac{X}{X_0} + 0.187 \cdot \exp\left(0.866 \cdot \frac{X}{X_0}\right)$$
(2)

Madamba, Driscoll and Buckle^[11] use the equation below to describe the apparent density
behavior of garlic slices with respect to moisture during the drying process:

$$\rho_b = 1267.2 + 2.6X - 0.1X^2 \tag{3}$$

The above-mentioned equations do not take into account changes in the chemical and biological properties of the material that may modify its density. In thermolabile biological materials, several reactions are set off by the drying process, including chemical reactions, cellular collapse, and first and second order phase transitions.^[12] As a result, structural property changes may occur. ^[14-17] During the drying process, the second order phase transition is dependent on the thermal history of the material^[18] and manifests itself as a change from a meta-stable, rubbery amorphous state to a glassy amorphous state; this occurs at a temperature denoted as the glass transition temperature (T_g) . However, it has not been clearly established if changes in apparent and particle density result from the transition.

The glass transition temperature (T_g) of a product can be used as a reference in order to modify processing conditions and halt the drying process at the appropriate point in order to maintain the quality of the foodstuff.

International Journal of Food Properties

 T_g increases with an increase in: drying temperature, solids content, molecular weight, and 91 removal of water during the drying process. ^[14-19] Additionally, this property has been associated 92 with porosity, as a large quantity of pores has been linked to a decrease in T_g . ^[15, 17]

Molecular diffusion in foodstuffs is linked to molecular mobility. Independent of drying conditions (temperature, T; relative humidity, %HR; air velocity, *v*), the degree of mobility and the structure of the material influence water diffusivity and the compounds it transports. In many agricultural food products, diffusivity is the main mechanism for moisture transfer during the first part of the drying process; in materials in a glassy state, such as dried products, molecular movement is virtually non-existent.^[20] Moisture diffusivity during drying is limited by the structure of the material and the possible state in which it is found (glassy or rubbery).

Currently, several methods are used to calculate effective diffusivity, including the permeation method, as well as drying and sorption kinetics.^[21] Effective diffusivity calculated from experimental data is a function of both the temperature and water content of the material. In order to calculate the deviation between theoretical diffusivity and experimental diffusivity, the slopes method, a simplified method used by Perry and Green,^[22] was used. A comparison of the slopes method with an optimization method (numerical simulation) produced by Kataranos, Villalobos and Saravacos^[23] concluded that both methods produce similar data in materials where diffusion is predominant.

111 The aim of this study was to analyze the effects of drying air temperature, moisture content, and 112 the second order phase transition on changes in particle density, apparent density, apparent 113 porosity, effective diffusivity, and cracking in garlic slices.

114 MATERIALS AND METHODS

116 Sample Preparation

For the sample, garlic (*Allium sativum*, L.) of the purple, vermillion variety was obtained from a single lot provided by a grower in Calera Zacatecas, Mexico. Longitudinal slices with a thickness of 2.2 ± 0.2 mm were cut using an adjustable steel slicer. The samples were placed on four plastic meshes (25cm × 25cm), and then placed inside a convective tunnel dryer.^[24] Sliced garlic samples were removed from the dryer during the process for structural properties determination.

124 Tunnel Dryer

38 125

> 126 A tunnel dryer with temperature and air velocity control,^[24] heated by two electrical 127 resistances of 20 Ω (2.4 kW) each, connected in parallel, was used for all tests. Air flow was 128 provided by a centrifugal fan (A-SQ, Armee Chicago). Air velocity was controlled by a 129 frequency variator (SAMI MINISTAR SNKU-501A, ABB), and air temperature was regulated 130 using a PID controller (LOVE CONTROLS 16A3030, Dwyer Instruments, USA). Relative 131 humidity (HR), air velocity (ν), air temperature (T_{drying}), surface temperature (T_s), inside 132 temperature (T_i), and weight loss were monitored in real time using a FieldPOINT® data

133	acquisition system. Data recording was performed once a minute using LabVIEW® software
134	from National Instruments $\ensuremath{\mathbb{B}}$. Temperatures T_i and T_s were measured with a semisolid
135	implantable thermocouple 40-gauge (0.225 mm diam.), type T (A-08506-70, Cole Parmer). For
136	T _i measurement, the thermocouple was implanted in a garlic slice that had been previously
137	perforated with a needle (BD TM , 21G x 1 ¹ / ₂ in, regular bevel, O.D. of 0.81 mm). The perforation
138	was carefully performed parallel to the longest axis in the center of the slice. For T _s measurement,
139	the thermocouple was attached to the surface of the garlic slice using the natural adhesiveness of
140	garlic and a circle (0.5 mm diam.) of aluminum tape to increase contact surface area.
141	
142	Three air temperatures (40, 50 and 60°C) were tested; the air velocity for each test was 1.5 m/s,
143	and the flow was parallel to the largest exposed area of the garlic. Each drying trial and
144	measurement was performed in triplicate. An ANOVA of the results was performed with α =0.05
145	using NCSS 2003 software.
146	
147	Density and Porosity
148	
149	Particle density (ρ_p) is defined as the mass contained in a given volume, excluding pores in the
150	material.
151	$\rho_{\rm p} = \frac{{\rm m}_{\rm s} + {\rm m}_{\rm w}}{{\rm V}_{\rm s} + {\rm V}_{\rm w}} \tag{4}$
152	Particle density was calculated using the particle volume and mass of the sample. Particle
153	volume was measured with a stereopicnometer (SPY - 5DC, Quantachrome, USA) with the
154	pressure inside the equipment set at 1.195 \pm 0.003 kg _f /m ² . For mass measurements, samples of

 30 ± 2 g were used. The apparent density of foodstuffs is considered to be ratio of the mass over 156 the volume of the sample, including pores, and is defined as:

$$\rho_{\rm b} = \frac{\mathrm{m}_{\rm s} + \mathrm{m}_{\rm w}}{\mathrm{V}_{\rm s} + \mathrm{V}_{\rm w} + \mathrm{V}_{\rm a}} \tag{5}$$

Apparent density (ρ_b) was measured in 1 ± 0.25 g of non-coated sample, using the volume displacement method with n-heptane^[25] and a density kit (YDK 01-OD, Sartorius). Measurements were carried out within ≈ 10 s to prevent the immersion liquid from being absorbed. This variable was calculated with the following equation:

$$\rho_{\rm b} = \frac{\mathbf{m}_{\rm s-a} \cdot \rho_{\rm l}}{\mathbf{m}_{\rm s-l}} \tag{6}$$

163 where ρ_1 was 680 kg/m³.

Apparent porosity was calculated using the data for particle and apparent densities according to the definition of porosity as established by Zogzas, Maroulis and Marinos-Kouris, ^[26] where air volume is considered to be the total volume of a material, as expressed by the following equation:

 $\varepsilon_{\rm p} = 1 - \frac{\rho_{\rm b}}{\rho_{\rm p}} \tag{7}$

168 Fitting Experimental Data

The experimental data for particle density, apparent density, and porosity were fitted to a non-linear equation using NCSS 2003 software.

172 Microstructure

The microstructure of the material was observed from dried samples that had been stored in vacuum-sealed bags. The cellular structure of the samples was observed using a low-pressure vacuummetric scanning electron microscope (JEOL JSM-6360 LV, Tokyo, Japan) operated at 15 kV in secondary electron mode. The samples were first vacuum-dehydrated and then coated with a 10 nm-thick layer of gold-palladium. No chemical fixation was used.

179 Effective Diffusivity

where the Fourier number is:

Effective diffusivity was calculated using the weight data obtained during drying from the LabVIEW® software. The slopes method (Eq. 10) was used. The experimental drying curve (W vs. t) was compared with the theoretical drying curve (W vs. Fo). The slopes of the experimental curve $(dW/dt)_{exp}$ and the theoretical curve (dW/Fo) are estimated for given non-dimensional moisture contents (W). For W, the weight data obtained from the drying process was used, and the final weight data was X_e. Diffusivity was calculated using the following equation:

$$D = \frac{\left(\frac{dW}{dt}\right)_{exp}}{\left(\frac{dW}{dFo}\right)} \cdot l_0^{-2}$$
(8)
Fo = $\frac{D \cdot t}{l_0^{-2}}$ (9)

The solution of this equation for a slice with constant diffusivity (D) in terms of an infinite series is given by Crank. ^[27] In this study, the solution of Eq. 10 was employed, using the first term in the series:

URL: http:/mc.manuscriptcentral.com/ljfp Email: shafiur@squ.edu.om

$$W = \frac{X_{e} - X}{X_{e} - X_{0}} = \frac{8}{\pi^{2}} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^{2}} e^{-(2n+1)^{2}D*t\left(\frac{\pi}{2l_{0}}\right)^{2}}$$
(10)

194 Glass Transition Temperature (T_g)

The glass transition temperature was obtained using an MDSC (O100, TA-Instruments) and Universal Analysis 2000 4.1D software. The samples were ground with a mortar and pestle, and 25.56 ± 2.91 mg was hermetically sealed in aluminum pan. An empty pan was used as reference. The scanning range was from -50 to 100°C. The heating/cooling rate used in this study was 4 °C/min with a modulation of ±1.0 °C in amplitude. Thermograms of total, reversible, and nonreversible heat flow were analyzed. The glass transition temperature was identified as the midpoint between Tg_{onset} and Tg_{endset} in the reversible heat flow line. The T_g of the dried garlic samples was calculated using the Gordon and Taylor equation: ^[28]

$$\Gamma g = \frac{\left(W_{s} * T_{g_{s}} + k_{G-T} * W_{w} * T_{g_{w}}\right)}{W_{s} + k_{G-T} * W_{w}}$$
(11)

where K_{G-T} is the Gordon-Taylor coefficient, and was calculated using the Simha-Boyer rule: ^[29]

$$k_{G-T} = \frac{\left(\rho_{w} * T_{g_{w}}\right)}{\left(\rho_{s} * T_{g_{s}}\right)}$$
(12)

In the present study, water density (ρ_w) and particle density (ρ_p) were used to calculate ρ_s using Eq. (4). The T_{g_w} value of water was -135°C. T_{g_s} was calculated by iteration using experimental data (T_g) and Eqs. (11) and (12).

210 RESULTS AND DISCUSSION

Experimental data for particle density (ρ_p) and apparent density (ρ_b) with respect to moisture content are shown in Figs. 1 and 2. The initial moisture content of garlic (X₀) was 1.83 ± 0.21 kg/kg. Particle density varied linearly from 1214 to 1677 kg/m³ as X/X₀ decreased from 1.0 to 0.18. Subsequent to this value, a change in the linear tendency was observed with X/X_0 tending to 0.0 when ρ_p falls from 1700 to 1100 kg/m³, depending on the drying air temperature. Apparent density varied linearly from 1045 to 1345 kg/m³, as X/X₀ decreased from 1.0 to close to 0.1. Subsequently, $\rho_{\rm b}$ had a change in tendency, falling from 1345 to 1150 kg/m³ as X/X₀ decreased from 0.1 to close to 0.0.

Considering that density is a function of volume (Eqs. 4 and 5), the concepts employed in studies of shrinkage (V/V_0) were used to explain the behavior of density during the drying process. It has been suggested that a decrease in volume is proportional to water loss^[10, 11] and has a linear behavior with respect to moisture content. The non-linear segment may be explained by the fact that a reduction in volume is not equivalent to water loss due to the formation of a rigid surface that limits moisture transference to surrounding areas, particularly during the final stage of the drying process. If this is the case, then the tendency of density is non-linear with respect to moisture content.^[15, 26, 30, 31] However, this non-linear behavior has also been explained as a result of pores closing during the final stage of drying.^[10] In that case, the solid volume considered in the calculation of density is greater than the real volume. As a final possibility, Franklin^[32] suggests that changes in density are related to chemical composition which in turn is affected by phase transitions during drying. Therefore, it is of interest to assess the effects of phase transitions on density in order to explore this phenomenon further.

Figure 3 shows porosity (ϵ) as a function of X/X₀. The porosity of the raw garlic samples was found to be 0.14-0.16. Water loss caused a decrease in porosity when X/X_0 approached 0.1; this decrease was particularly drastic at drying temperatures of 50 and 60°C. Rahaman, Hussain and Ng ^[30] explain porosity behavior through the analysis of tendencies found in various materials. According to these tendencies, porosity at 40°C is related to moisture content, whereas at higher temperatures, there is an increase in the formation of pores in the first stage of the drying process, until a critical value is reached, at which point a collapse occurs as a result of water loss. In addition, the effects of case hardening may affect the formation of pores,^[26] especially at high temperatures.^[30] Water elimination has been found to be accompanied by shrinkage; this results in an increase in apparent density and porosity during drying. ^[10, 15, 19, 26, 31, 33-35]

Some authors ^[10, 11] have proposed equations for the mathematical representation of changes in structural properties (ρ_p , ρ_b , ε); these equations are functions of moisture content. Nevertheless, at the end of the drying process, when the data has a non-linear tendency with respect to moisture content, these equations do not provide a suitable fit. An approach for fitting experimental data to an empirical model is presented in Equation 13, composed of the sum of three exponential terms whose coefficients are shown in Table 2. A good fit for experimental data was found ($\mathbb{R}^2 > 0.85$) for this equation.

$$A * \exp(-B * X/X_0) - C * \exp(-D * X/X_0) + E * \exp(-F * X/X_0) = \begin{cases} \rho_p, \\ \rho_b, \\ \varepsilon. \end{cases}$$
(13)

According to Aguilera and Stanley, ^[12] cellular structure is affected when water in the protoplasm migrates through the cell membrane towards surrounding cell walls, and through the pores of the surface tissue, causing membrane rupture (cracking). The effects of drying on the cellular structure of garlic are shown in Fig. 4. Well-defined cellular structure was found in raw garlic (Fig. 4a), whereas a large amount of cracking and loss of tridimensional cellular structure was found in samples dehydrated at high temperatures (Fig. 4d). Similar results were reported by Bai *et al.* ^[36] for apple rings dehydrated by convection. Sacilik & Unal ^[37] found that the structural characteristics of Kastamonu garlic slices were affected by the drying air temperature and the thickness of the sample. Damage in the cellular structure of garlic (cellular cracking) may result in the loss of important nutraceutical properties. ^[3, 4, 6] The structural behavior shown in micrographs of dried samples is consistent as to porosity (Fig. 3) and density (Fig. 2) at the end of the drying process. A small amount of cracking in cellular structure with few pores indicates a denser product.^[12]

Micro-structural aspects are reflected in transference coefficients. Changes in cellular structure during the drying process affect moisture diffusion (D) in materials. ^[12] In Fig. 5, a decrease in D can be observed as a function of a decrease in X/X_0 and drying air temperature. Dense products with lower porosity were found to display lower diffusivity (Table 1), which agrees with the results found by King. ^[38] In dense products, moisture transfer from the interior of the material to the surface is lesser than in porous materials. Similar results were obtained by Monteau, Bail and Hamdami ^[39] and Marinos-Kouris and Maroulis. ^[21]

According to the William-Landel-Ferry theory ^[40] of glass transition, molecular mobility is limited by the phase which the material is in. Low moisture diffusivity is accompanied by a decrease in the mobility of polymer chains and an increase in T_g . ^[26] At low moisture content levels, diffusivity is no longer a dominant mechanism, as at that point the material passes into an amorphous glassy state. ^[20] This behavior was identified in X/X₀ values between 0.13 and 0.07 (Fig. 5)

Fig. 6 shows the intersection of glass transition temperature (T_g) with the inside (T_i) and surface (T_s) temperatures for garlic slices. A critical point was found when $T_i \cong T_g \cong T_g$, which indicates a second order phase transition. The identification of this critical point may aid in the determination of the appropriate time to stop the drying process in order to prevent undesirable changes in structural properties. The glassy state was identified at moisture contents of 0.0749, 0.0937 and 0.1172 kg/kg for garlic dehydrated at 60, 50 and 40 °C, respectively, when $(T_g-T_i) > 0$ and $(T_g-T_s) > 0$.

After a phase transition, the molecular mobility of foodstuffs is slower, and the product is more brittle than it was prior to the transition. As a result of this effect, T_g can be used as a reference to evaluate quality degradation occurring at a given point in the drying process. Many studies have found that the drying temperature and the thermal history of the material affect the T_g of foodstuff samples. ^[14-17]

Previous studies have suggested the importance of phase transitions that occur during the drying
 process, and their effects on structural properties. ^[15-17, 30, 36] Conformational arrangements,

molecular arrangements, and the formation of new compounds can be produced both by the thermal effects of drying^[3] and by second order phase transitions. ^[18] In pure materials such as carbon, Franklin^[32] demonstrated that density decreases as the hydrogen present in the carbon sample increases, indicating a change in the chemical characteristics of the material. Despite the lack of experimental evidence of the density-composition relationship in complex foods such as garlic, the presence of a significant number of chemical changes in superficial and internal structures as a result of the drying process has been demonstrated (enzymatic and non-enzymatic reactions, browning, color changes). Thus, as changes in chemical composition produce changes in density, and second order phase transitions affect chemical composition, a change in density can be expected.

A phase transition (Fig. 6) related to slope changes in the tendencies of the particle density, apparent density, and porosity of garlic was observed during the drying process (Figs. 1, 2 & 3). Additionally, high values of T_g were found in the more dense samples (Table 1). These results confirm that the chemical composition of the sample was modified by phase transitions occurring during the drying process, and that a new product was formed during drying, with different characteristics from those of the original material.

The results of this study also demonstrate a decrease in porosity as T_g increases. At the end of the drying process, (X/X₀ = 0.038), T_g was found to have values of 65.51, 62.00, and 59.76, and porosity was found to be 0.06, 0.09, and 0.14 for drying temperatures of 40, 50 and 60 °C, respectively. These results confirm the explanation put forth by Kasapis *et al.*, ^[17] and Sablani *et* *al.*, ^[15] who indicated that pore formation irreversibly affects cellular structure during 323 dehydration, and may be related to glass transition temperature.

325 CONCLUSIONS

 ρ_b , ρ_p , ϵ , and D were found to be functions of drying air temperature, moisture content, and the phase which the material was in. A critical point in the intersection of T_i , T_s , and T_g was found; this point was identified as a second order phase transition. This second order phase transition was associated with a change in the slopes of structural properties (ρ_b , ρ_p and ϵ). A drastic tendency change was found in porosity (ε) with respect to moisture content, particularly at high temperatures and low moisture contents. A non-linear, three term exponential equation was proposed to represent changes in ρ_b , ρ_p and ε as a function of moisture content, with an R² > 0.85. Micrograph analysis confirmed that porosity and density at the end of the drying process were related to cracking in cellular structure. Moisture diffusion (D), as calculated, was consistent with the density, porosity, and glass transition temperature observed throughout the drying process. These results indicate that the chemical composition, structure, and cellular arrangement of samples at the end of the drying process were different from those of the original, raw samples.

45 339

ACKNOWLEDGEMENTS

2 3			
4	217	The or	thors would like to thank the SIP and the COEAA of the Institute Politécnico Nacional for
5	542	The at	unors would like to thank the SIF and the COFAA of the instituto Fontechico Nacional for
6 7 8	343	the fac	cilities provided to carry out this investigation, and their generous financial support of the
9 10	344	projec	t SIP-20110358 and scholarship from CONACyT.
11 12	345		
13 14			
15	346	NOM	ENCLATURE
16	347		
1/ 18			
19	348	D	Diffusivity over time (t) (m^2/s)
20	349	HR	Relative humidity (%)
21	350	k _{G-T}	Gordon-Taylor Constant
22	351	l	Thickness (m)
23	352	m	Mass (kg)
24 25	353	m _{s-a}	Mass of the solid in air (kg)
26	354	m _{s-li}	Mass of the solid in an immersion liquid (kg)
27	355	Т	Temperature (°C)
28	356	T _{drying}	Drying air temperature (°C)
29	357	Tg	Glass transition temperature (°C)
30 31	358	T_i	Inside temperature of the garlic slice (°C)
32	359	Ts	Surface temperature of the garlic slice (°C)
33	360	t	Time (min)
34	361	V	Volume (m ³)
35	362	V	Drying air velocity
36	363	W	Mass fraction (kg/kg _{total})
38	364	Х	Moisture content (kg of water/ kg dry solid)
39	365		
40 41	366	Greek	Letters
42	367	3	Porosity
43 44	368	ρ	Density (kg/m ³)
45 46	369		
47	370	Subsci	ripts
48	371	a	Air
49 50	372	b	Apparent
51	373	dw	Water displacement (Solid in immersion liquid)
52	374	e	Equilibrium
53	375	exp	Experimental
54 55	376	1	Immersion liquid
56 56	377	р	Particle
57			
58			
59			
60			

1 2 2			
3 4 5	378	S	Dry solid
5 6	379	th	Theoretical
7	380	W	Water
8 9	381	0	Initial
10	382		
11 12	383	Dime	nsionless Groups of Physical Properties
13	384	Fo	Fourier diffusion number
14	385	W	Nondimensional moisture content
15 16			
17			
18 10			
20			
21			
22 23			
24			
25 26			
20 27			
28			
29 30			
31			
32 33			
33 34			
35			
36 37			
38			
39 40			
40 41			
42			
43 44			
45			
46			
47			
49			
50 51			
52			
53			
ว4 55			
56			
57 59			
50 59			
60			

μyεκ inisture con.

1	
2	
ა ⊿	
4 5	
6	
0 7	
γ Q	
0	
9 10	
10	
11	
12	
13	
14	
10	
10	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

386 **5. REFERENCES**

- Chua, K.J.; Ho, J.C.; Chou, S.K.; Mujumdar, A.S.; Hawlader, M.N.A. Analytical Study Of Cyclic Temperature Drying: Effect On Drying Kinetics And Product Quality. Journal of Food Engineering, 2002, 51, 65-75.
- Aguilera, J. M. Drying and Dried Products under the Microscope, Food Science and Technology International. 2003, 9 (3), 137-143.
- 3. Amagase, H.; Petesch, B.L.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of garlic and its bioactive components. The Journal of Nutrition. **2001**, *131*, 955S-962S.
- Lawson, L.D. Bioactive organosulfur compounds of garlic and garlic products: role in reducing blood lipids, Kinghorn, A.D. and Balandrin, M.F., Editors. Human Medicinal Agents from Plants, American Chemistry Society, Washington, DC. 1993, 306–330.
- 5. Lanzotti, V. The analysis of onion and garlic. Journal of Chromatography A. 2006, *1112*, 3-22.
- Jones, M.G.; Hughes, J.; Tregova, A.; Milne, J.; Tomsett, A.B.; Collin, H. A. Biosynthesis of the flavor precursors of onion and garlic. Journal of Experimental Botany. 2004, 55 (404), 1903-1918.
- Amagase, H. Clarifying the real bioactive constituents of garlic. The Journal of Nutrition. 2006, 136, 716S-725S.
- Pezzutti, A.; Crapiste, G.H. Sorptional equilibrium and drying characteristics of garlic. Journal of Food Engineering. 1997, *31*, 113–123.

- 9. Sharma, G.P.; Prasad, S. Drying of garlic (Allium sativum) cloves by microwave-hot air combination. Journal of Food Engineering. **2001**, *50*, 99-105.
 - Lozano, J.E.; Rostein, E.; Urbicain, M. J. Shrinkage, porosity and bulk density of foodstuffs at changing moisture contents. Journal of Food Science. 1983, 48, 1497-1553.
 - 11. Madamba, P.S.; Driscoll, R. H.; Buckle, K.A. Shrinkage, density and porosity of garlic during drying. Journal of Food Engineering. **1994**, *23*, 309-319.
 - 12. Aguilera, J.M.; Stanley, D.W. Microstructural principles of food processing & engineering, Elsevier Applied Science, London and New York, 1992, p.343
 - Rahman, M.S.; Al-Amri, O.S.; Al-Bulushi, I.M. Pores and physico-chemical characteristics of dried tuna produced by different methods of drying. Journal of Food Engineering. 2002, *53*, 301-313.
 - 14. Roos, Y.H. Effect of moisture on the thermal behavior of strawberries studied using DSC. Journal of Food Science. 1987, 52, 146-149
 - 15. Sablani, S.S.; Rahman, M.S.; Al-Kuseibi, M.K.; Al-Habsi, N.A.; Al-Belushi, R.H.; Al- Marhubi, I.; Al-Amri, I.S. Influence of shelf temperature on pore formation in garlic during freeze drying. Journal of Food Engineering. 2007, 80, 68-79.
 - 16. Sablani, S.S.; Kasapis, S.; Rahman, M.S. Evaluating water activity and glass transition concepts for food stability. Journal of Food Engineering. 2007, 78, 266– 271.

- 17. Kasapis, S.; Rahman, M.S.; Al-Marhubi, I.M.; Al-Mahroqi, A. Porosity and the effect of structural changes on the mechanical glass transition temperature. Journal Agricultural and Food Chemestry. **2007**, *55*, 2459-2466.
 - Martínez-Navarrete, A.; Chiralt, A.; Fito, P. Termodinámica y Cinética de Sistemas: Alimento-Entorno, Instituto Politécnico Nacional, Mexico 1999.
 - Attanasio, G.; Cinquanta, L.; Albanese, D.; Matteo, M. Effects of drying temperatures on physic-chemical properties of dried and rehydrated chestnuts (Castanea sativa). Food Chemistry. 2004, 88, 583–590.
 - 20. Levine, H.; Slade, L. Interpreting the Behavior of Low-Moisture Foods, Water and Food Quality; Hardman, T. M., Ed.; Elsevier Applied Science: London 1989, 71-134.
 - 21. Marinos-Kouris, D.; Maroulis Z.B. Transport Properties in the Drying of Solids, Chapter 4, Part I, Hand book of Industrial Drying, 3th edition, CRC Press, NW, 2006, p.1280
- 22. Perry, R.H.; Green, D.W. Manual del Ingeniero Químico, 6th edition, McGraw-Hill, México 2001.
- 23. Kataranos, V.T.; Villalobos, G.; Saravacos, G.D. Comparison of two methods of estimation of the effective moisture diffusivity from drying data. Journal of Food Science. **1990**, *5*(*1*), 219-233.
- 24. Rodríguez-Rámirez, J.; Méndez-Lagunas, L.; Martínez-Álvarez, C.; Diego-Nava, F. A closed loop tunnel for drying kinetics research, Inter-American Drying Conference, Boca del Río, Veracruz, Mexico 2001, 499-504.

- 25. Mohsenin, N.N. Physical properties of plant and animal materials, Gordon and Breach. Science Publishers, Inc., New York 1980, p. 742
- 26. Zogzas, N.P.; Maroulis, Z.B.; Marinos-Kouris, D. Density, shrinkage and porosity of some vegetables during air drying. Drying Technology. **1994**, *12* (7), 1653-1666.
- Crank, J. The Mathematics of Diffusion, second edition Oxford University Press, N.Y. 1975.
- 28. Gordon, M.; Taylor, J.S. Ideal copolymers and the second order transitions of synthetic rubbers. I. Noncrystalline copolymers. Journal of Applied Chemistry. 1952, 2, 493–500.
- 29. Simha, R.; Boyer, R.F. On a general relation involving the glass transition temperature and coefficients of expansion of polymer. Journal of Chemical Physics. 1962, *37*, 1003-1007
- 30. Rahman, M. S.; Hussain M.A.; Ng. C.W. Prediction of pores formation (porosity) of food during drying: generic models by the use of hybrid neural network. Journal of Food Engineering. 2002, 51, 239-248
- Krokida, M.K.; Philippopoulos, C. Rehydration of Dehydrated Foods. Drying Technology. 2005, 23, 799-830.
- 32. Franklin R.E. A note on the true density, chemical composition, and structure of coals and carbonizes coals. Fuel. , 27, 46-49.
- 33. Wang, N.; Brennan, J.G. Changes of structure, density and porosity of potato during dehydration. Journal of Food Engineering. 1990, 24, 61-76.

- 34. Talla, A.; Puiggali, J.R.; Jomaa, W.; Janno, Y. Shrinkage and density evolution during drying of tropical fruits: application to banana. Journal of Food Engineering.
 2004, 64, 103-109.
 - 35. Gabas, A. L.; Marra-Júnior, W. D.; Telis-Romero, J.; Telis, V. R. N. Changes of density, thermal conductivity, thermal diffusivity, and specific heat of plums during drying. International Journal of Food Properties. **2005**, *8*, 233–242.
 - 36. Bai, Y.; Rahman, S.; Perera, C.O.; Smith, S.; Melton, L.D. Structural changes in apple rings during convection air-drying with controlled temperature and humidity. Journal of Agricultural and Food Chemestry. 2002, 50, 3179-3185.
 - 37. Sacilik, K.; Unal, G. Dehydration characteristics of kastamonu garlic glices.Biosystems Engineering. 2005, 92 (2), 207-215.

38. King, J. C. Separation process, McGraw-Hill, New York 1980.

- 39. Monteau, J.; Hamdami, N.; Bail, A. L. Transport properties of a high porosity model food at above and sub-freezing temperatures. Part 2: Evaluation of the effective moisture diffusivity from drying data. Journal of Food Engineering. 2004, 62, 385– 392.
- 40. Williams, M. L.; Landel, R. F.; Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of American Chemical Society. **1955**, *77*, 3701-3707.

Figure 1. Particle density with respect to X/X₀ during drying

Figure 3. Porosity of garlic slices during drying

15 Figure 6. Glass transition temperature, surface temperature, and inside temperature for garlic slices during drying

URL: http:/mc.manuscriptcentral.com/ljfp Email: shafiur@squ.edu.om

1
2
3
1
4 5
5
6
7
8
9
10
11
12
13
1/
14
16
1/
18
19
20
21
22
23
24
24
20
26
27
28
29
30
31
32
33
3/
35
20
30
31
38
39
40
41
42
43
44
15
40
40
4/
48
<u>4</u> 0

2

Table 1. Particle	density, apparent	t density, and glass	transition temperation	ure for garlic	samples at 0.1 X/X_0
	2/11	, U	1	0	1 0

T _{drying}	ρ_p	$ ho_b$	Tg
(°C)	(kg/m^3)	(kg/m^3)	(°C)
40	1539.11 ± 103.21	1333.45 ± 3.47	49.65
50	1506.86 ± 7.21	1267.41 ± 1.82	46.62
60	1430.22 ± 8.58	1191.05 ± 15.82	45.13

Table 2. Coefficients corresponding to the Eq. (13) for particle density, apparent density, and apparent porosity for garlic samples
dehidrated at 40,50 and 60°c.

Devenuetor	T _{drying}	Coefficient						
Farameter	(°C)	Α	В	С	D	Е	F	n
	40	910.48	0.086	111488.57	113.34	823.52	0.63	0.98
ρ_p	50	31322.86	8.55	31728.11	8.68	1531.97	0.23	0.85
(Kg/III)	60	1444.30	0.17	68024.89	25.00	66864.08	24.68	0.98
	40	10251.39	68.82	15755.42	77.02	1341.84	0.24	0.98
ρ _b (ka/m³)	50	1261.77	0.19	3931.75	41.58	3434.04	338.13	0.99
(60	997.32	0.00	194.32	26.30	283.43	2.01	0.90
	40	2.38	0.54	3.06	0.63	0.73	0.67	0.91
ε	50	0.14	0.00	2.26	20.74	2.05	20.74	0.91
	60	0.17	0.08	1.33	45.90	0.74	45.91	0.93

Asks of the Editor

C-1y C-2: English and clarity must be improved? Please request one of your colleagues to check the English and clarity of the revised version?

The entire text of the article has been rewritten to improve its clarity, and the final version was edited by an American translator with a degree in English-Language Literature.

C-3: Define?? T_i and T_s have been appropriately defined in the text, at Lines 131 and 132 on p.6

C-4: Use SI, Pa? Line 154 on p.7 has been corrected.

Units of kg_f/m^2 were used for pressure. This unit can be found in the international system of measurements.

C-5: The sample must be coated for the measurement of the apparent density?

Line 158, p.8, has been corrected and now reads as follows:

Apparent density (ρ_b) was measured in 1 ± 0.25 g of non-coated sample, using the volume displacement method with n-heptane^[25] and a density kit (YDK 01-OD, Sartorius). Measurements were carried out within \approx 10 s to prevent the immersion liquid from being absorbed. This variable was calculated with the following equation.

C-6: It needs more details. Further details were added; see lines 174-178 on p.9.

C-7: Needs more details. More details were added; see lines 196-203 on p.10

C-8: Check reference numbers. The references have been checked and corrected.

C-9: Include all density and porosity data as tabular form. Normally, it is recommended that authors avoid repetition when presenting data in tables and figures. Nevertheless, a table can be prepared if the editor or one of the reviewers believes it to be necessary.

C-10: The results and discussions must be improved significantly.

The results were analyzed more deeply and discussed in a wider manner, significantly improving the interpretation of the data presented in the study. Additionally, the clarity of the document has been revised to ensure a greater understanding of the text. See lines 212 to 323, pp. 11-16.

The Conclusions section and the abstract were also revised.

Reviewer: 1

There are some grammar error should be revisited as follows: Page 8, Line 111: was done carefully change to was carefully done.

The text on page 7, line 138, has been corrected, and a grammatical review of the entire document has been performed.

Page 16, Line 240: remove one of two In Etc....

The text on page 14, lines 288-290, has been corrected.

line 21: explain what is X/Xo in order to be consistent with the others abbreviations

The nomenclature X/X_0 , which expresses non-dimensional moisture content, is widely used in the works included the bibliography.

and secondly X/X0 varies from 0 to 1.0 (not 1 to 0.1)that is moisture content t=o vs t=t

In the works included in the bibliography, it is common to explain the drying process as beginning with the moisture content of the fresh material, and ending with the dry product where X/X_0 is approximately 0. In the interest of a clear understanding of the phenomena explained in this section, the text was left unaltered.

Line 39: Sentence not clear. Lines 45 and 46 have been corrected.

Line 56 to 58: sentence should be improved The text has been corrected in lines 66-68 as follows:

Some authors have found that the particle density of garlic has a linear tendency, ^[10, 11] and a relationship has been found between low density and a large quantity of pores formed during drying. ^[13]

Line 105: flow rate should be replaced by Air velocity This has been corrected in the text.

Line 283:is it o or 0 it is 0

Figure 3: no explanation in the text about the model curve vs experimental curve. This has been explained in the text in lines 246-252 on p.12:

A good fit for experimental data was found (R2 > 0.85)

Table 1: What are the value 2,3,4,5,6 attached to the Tg values? The text has been corrected as follows:

T _{drying}	$ ho_p$	ρ_b	Tg
(°C)	(kg/m^3)	(kg/m^3)	(° C)
40	1539.11 ± 103.21	1333.45 ± 3.47	49.65
50	1506.86 ± 7.21	1267.41 ± 1.82	46.62
60	1430.22 ± 8.58	1191.05 ± 15.82	45.13

Reviewer: 3

1- Introduction must be write as a expanded;

The introduction has been expanded and corrected.

2- Material and Methods must be writen as a detailed form and drying process scheme must be drawn; The materials and methods section was rewritten in greater detail. The drying process scheme was drawn and it can be included in the manuscript according to the editor's

decision

3- How is obtain garlic, must be writen; when and where from;

This has been corrected and described in detail in the Methodology section.

4- Equations must be regulated; as a X/Xo = m; may be understood easily this equations

In order to avoid overly modifying the text, this methodology was not implemented. Nevertheless, X/X_0 is commonly used in the terminology of articles in this specialty (ex: Lozano et. al, 1983)

5- There are some spelling and syntax errors in manuscript; as a Line 133 Dwyer Instruments

The text has been thoroughly revised to address spelling and syntactical errors.

6- Some reference at the list there'nt in manuscript [34] 34. Marousis, S.N. and Saravacos, G.D. Density and porosity in drying starch materials. Journal of Food Science 1990, 55 (5), 1367-, ,

All references have been included in the manuscript.

The authors are grateful to reviewer and editor for the revision of this work.